Partial Decomposition

In the Division Algorithm, the rational expression $\frac{f(x)}{d(x)}$ is:

1) Improper if the degree of $f(x)$ is greater than $d(x)$.
2) Proper if the degree of $f(x)$ is less than $d(x)$.

Partial Decomposition of Improper Rational Expressions

To find the partial fractions follow the steps listed below:
Step 1: Use long division of polynomials to get a quotient $p(x)$ and a remainder $r(x)$. Then write: $R(x)=\frac{P(x)}{Q(x)}=p(x)+\frac{r(x)}{Q(x)}$, where the degree of $r(x)$ is less than that of $Q(x)$.
Step 2: Factor the denominator $Q(x)=q_{1}(x) q_{2}(x) \ldots . . q_{n}(x)$, where each factor $q_{i}(x)$ is either linear $a x+b$, or irreducible quadratic $a x^{2}+b x+c$, or a power of the form $(a x+b)^{n}$ or $\left(a x^{2}+b x+c\right)^{n}$.
Step 3: Decompose $\frac{r(x)}{Q(x)}$ into partial fractions of the form:
$\frac{r(x)}{Q(x)}=F_{1}(x)+F_{2}(x)+. F_{3}(x)+\ldots .$. , where each fraction is of the form
$F_{i}(x)=\frac{A}{(a x+b)^{k}} \quad$ Or $\quad F_{i}(x)=\frac{A x+B}{\left(a x^{2}+b x+c\right)^{k}}$
where $1 \leq k \leq n$ (n is the exponent of $a x+b$ or $a x^{2}+b x+c$ in the factorization of $Q(x)$.)

Example 1: Decompose $R(x)=\frac{x^{3}+x^{2}+2}{x^{2}-1}$ into partial fraction:
Using long division, $R(x)=\frac{x^{3}+x^{2}+2}{x^{2}-1}=x+1+\frac{x+3}{x^{2}-1}$
Now we need to decompose $\frac{x+3}{x^{2}-1}$. First, we need to factorize $x^{2}-1$.

$$
\begin{aligned}
& x^{2}-1=(x-1)(x+1) \\
& \frac{x+3}{x^{2}-1}=\frac{x+3}{(x-1)(x+1)}=\frac{A}{x+1}+\frac{B}{x-1}
\end{aligned}
$$

$\frac{A}{x+1}+\frac{B}{x-1}=\frac{A(x-1)+B(x+1)}{(x-1)(x+1)}$
$\frac{A(x-1)+B(x+1)}{(x-1)(x+1)}=\frac{(A+B) x+(-A+B)}{(x-1)(x+1)}$
$\frac{(A+B) x+(-A+B)}{(x-1)(x+1)} \equiv \frac{x+3}{(x-1)(x+1)}$
$\left\{\begin{array}{l}(A+B) x \equiv x \\ (-A+B) \equiv 3\end{array} \Leftrightarrow\left\{\begin{array}{l}A+B=1 \\ -A+B=3\end{array}\right.\right.$
Therefore, $B=2$ and $A=-1$
$\frac{x+3}{x^{2}-1}=\frac{-1}{x+1}+\frac{2}{x-1}$
$R(x)=\frac{x^{3}+x^{2}+2}{x^{2}-1}=x+1+\frac{-1}{x+1}+\frac{2}{x-1}$

Partial Decomposition of Proper Rational Expressions

In this case we skip the first step and we start directly with the second step.
Example 2: Decompose $R(x)=\frac{x+2}{x^{2}-x-2}$ into partial fractions:
We need to decompose $\frac{x+2}{x^{2}-x-2}$. First, we need to factorize $x^{2}-x-2 . x^{2}-x-2=(x-2)(x+1)$

$$
\frac{x+2}{x^{2}-x-2}=\frac{x+2}{(x-2)(x+1)}=\frac{A}{x-2}+\frac{B}{x+1}
$$

$$
\begin{aligned}
& \frac{A}{x-2}+\frac{B}{x+1}=\frac{A(x+1)+B(x-2)}{(x-2)(x+1)} \\
& \frac{A(x+1)+B(x-2)}{(x-2)(x+1)}=\frac{A x+A+B x-2 B}{(x-2)(x+1)}=\frac{(A+B) x+(A-2 B)}{(x-2)(x+1)}
\end{aligned}
$$

$\frac{(A+B) x+(A-2 B)}{(x-2)(x+1)} \equiv \frac{x+2}{(x-2)(x+1)}$
$\left\{\begin{array}{l}(A+B) x \equiv x \\ (A-2 B) \equiv 2\end{array} \Leftrightarrow\left\{\begin{array}{l}A+B=1 \\ A-2 B=2\end{array}\right.\right.$
Therefore, $B=\frac{-1}{3}$ and $A=\frac{4}{3}$
$\frac{x+2}{x^{2}-x-2}=\frac{\frac{4}{3}}{x-2}+\frac{\frac{-1}{3}}{x+1}$
$\frac{x+2}{x^{2}-x-2}=\frac{4}{3(x-2)}+\frac{-1}{3(x+1)}$
$R(x)=\frac{x+2}{x^{2}-x-2}=\frac{4}{3(x-2)}+\frac{-1}{3(x+1)}$
Rule 1: Assume that $Q(x)$ is in the factored form and the degree of $r(x)$ is less than degree of $Q(x)$
.Then $\frac{r(x)}{Q(x)}$ is decomposed into partial fractions in the following way:
(1) For each factor of the form $(x-r)^{k}$ write $\frac{A_{1}}{(x-r)}+\frac{A_{2}}{(x-r)^{2}}+\frac{A_{3}}{(x-r)^{3}}+\ldots . .+\frac{A_{k}}{(x-r)^{k}}$ where $A_{1}, A_{2}, A_{3}, \ldots \ldots . A_{k}$ are coefficients to be determined.
(2) For each factor of the form $\left(a x^{2}+b x+c\right)^{k}$ write
$\frac{B_{1} x+C_{1}}{\left(a x^{2}+b x+c\right)^{1}}+\frac{B_{2} x+C_{2}}{\left(a x^{2}+b x+c\right)^{2}}+. \frac{B_{3} x+C_{3}}{\left(a x^{2}+b x+c\right)^{3}}+\ldots . .+\frac{B_{k} x+C_{k}}{\left(a x^{2}+b x+c\right)^{k}}$
, where $B_{1}, B_{2}, B_{3}, \ldots \ldots . B_{k}$ and $C_{1}, C_{2}, C_{3}, \ldots \ldots . C_{k}$ are coefficients to be determined.
Example 3: Decompose $R(x)=\frac{4 x^{5}-2 x^{4}+2 x^{3}-8 x^{2}-2 x-3}{(x-1)^{2}\left(x^{2}+x+1\right)^{2}}$ into partial fractions:
The denominator is already factored, so the four partial fractions are:
$\frac{4 x^{5}-2 x^{4}+2 x^{3}-8 x^{2}-2 x-3}{(x-1)^{2}\left(x^{2}+x+1\right)^{2}}=\frac{A}{(x-1)^{1}}+\frac{B}{(x-1)^{2}}+\frac{C x+D}{\left(x^{2}+x+1\right)^{1}}+\frac{E x+F}{\left(x^{2}+x+1\right)^{2}}$

