Optimization Problems

Optimization

If we wish to optimize a function, we are interested in finding its maximum or minimum.

APPLIED MINIMUM AND MAXIMUM PROBLEMS

Guidelines for Solving Applied Minimum and Maximum Problems

Step 1: Identify all given quantities and all quantities to be determined. MAKE A SKETCH!!!

Step 2: Write a primary equation for the quantity that is to be maximized or minimized.

Step 3: Reduce the primary equation to one having a single independent variable. You may need to use secondary equations relating the independent variables of the primary equation.

Step 4: Determine the feasible domain of the primary equation.

Step 5: Determine the desired maximum or minimum value using the techniques learned before.

MAXIMUM AREA

Example 1: A rancher has 200 feet of fencing with which to enclose two adjacent rectangular corrals. What dimensions should be used so that the enclosed area will be a maximum? **Step 1:**

GIVEN	QUANTITIES		QUANTITIES TO BE DETERMINED
200 FEE	ET OF FENCIN	IG	
<i>x</i>	<i>x</i>		
у	У	у	MAXIMUM AREA
P = 4x + 1	x x x +3y		

<u>Step 2</u>: Write y in terms of x from the perimeter formula and find the general formula of the area P = 4x + 3y

200 = 4x + 3y	and	A = 2xy
$y = \frac{200 - 4x}{x}$		
3		

<u>Step 3</u>: Write the area formula in terms of one variable (x) only 4 - 2rw

$$A = 2xy$$

$$A = 2x\left(\frac{200 - 4x}{3}\right)$$

$$A = \frac{400}{3}x - \frac{8}{3}x^{2}$$

<u>Step 4:</u> Domain: [0,200]

Mathelpers

<u>Step 5</u>: Find the derivative of *A*, then equate the derivative to zero to find the value of x

 $A = \frac{400}{3}x - \frac{8}{3}x^2$ $\frac{\delta A}{\delta x} = \frac{400}{3} - \frac{16}{3}x$ $0 = \frac{400}{3} - \frac{16}{3}x$ $\frac{16}{3}x = \frac{400}{3}$ $x = \frac{400}{16}$ x = 25

 $\frac{\delta^2 A}{\delta x^2} = -\frac{16}{3} < 0$, by the second derivative test, we have the maximum area when x = 25 ft and $y = \frac{200 - 4x}{3} = \frac{200 - 4(25)}{3} = \frac{100}{3}$ ft