## Optimization Problems

## Optimization

If we wish to optimize a function, we are interested in finding its maximum or minimum.

## APPLIED MINIMUM AND MAXIMUM PROBLEMS

Guidelines for Solving Applied Minimum and Maximum Problems
Step 1: Identify all given quantities and all quantities to be determined. MAKE A SKETCH!!!
Step 2: Write a primary equation for the quantity that is to be maximized or minimized.
Step 3: Reduce the primary equation to one having a single independent variable. You may need to use secondary equations relating the independent variables of the primary equation.
Step 4: Determine the feasible domain of the primary equation.
Step 5: Determine the desired maximum or minimum value using the techniques learned before.

## MAXIMUM AREA

Example 1: A rancher has 200 feet of fencing with which to enclose two adjacent rectangular corrals. What dimensions should be used so that the enclosed area will be a maximum?
Step 1:

| GIVEN QUANTITIES |  |  | QUANTITIES TO BE DETERMINED |
| :---: | :---: | :---: | :---: |
| 200 FEET OF FENCING |  |  |  |
| $y$ | $y$ | $y$ | MAXIMUM AREA |
| $P=4 x+\stackrel{x}{3 y}$ |  |  |  |

Step 2: Write $y$ in terms of $x$ from the perimeter formula and find the general formula of the area

$$
\begin{aligned}
P & =4 x+3 y \\
200 & =4 x+3 y \quad \text { and } \quad A=2 x y \\
y & =\frac{200-4 x}{3}
\end{aligned}
$$

Step 3: Write the area formula in terms of one variable ( $x$ ) only

$$
A=2 x y
$$

$$
\begin{aligned}
& A=2 x\left(\frac{200-4 x}{3}\right) \\
& A=\frac{400}{3} x-\frac{8}{3} x^{2}
\end{aligned}
$$

Step 4: Domain: $[0,200]$

Step 5: Find the derivative of $A$, then equate the derivative to zero to find the value of x

$$
\begin{aligned}
A & =\frac{400}{3} x-\frac{8}{3} x^{2} \\
\frac{\delta A}{\delta x} & =\frac{400}{3}-\frac{16}{3} x \\
0 & =\frac{400}{3}-\frac{16}{3} x \\
\frac{16}{3} x & =\frac{400}{3} \\
x & =\frac{400}{16} \\
x & =25
\end{aligned}
$$

$\frac{\delta^{2} A}{\delta x^{2}}=-\frac{16}{3}<0$, by the second derivative test, we have the maximum area when $x=25 \mathrm{ft}$ and $y=\frac{200-4 x}{3}=\frac{200-4(25)}{3}=\frac{100}{3} \mathrm{ft}$

