Name:

Operations with Complex Numbers

Use the trigonometric form to find each of the following products and quotients, and 1) express the result in the form of a + bi:

1)
$$(1+i)(\sqrt{2}-i\sqrt{2})$$

2)
$$(1+i)(3-3i)$$

3)
$$(1+i)(3-i)$$

4)
$$(1+2i)(4-3i)$$

5)
$$(i+3)(-2-i)$$

5)
$$(i+3)(-2-i)$$
 6) $(2i-5)(-3-i)$

7)
$$\left(-1 - i\sqrt{3}\right)\left(-4\sqrt{3} + 4i\right)$$

8)
$$(-1-i)(-2-3i)$$

$$9) \quad \frac{4+4\sqrt{3}i}{\sqrt{3}+i}$$

10)
$$\frac{1-i}{1+i}$$

11)
$$\frac{3+i}{2+i}$$

12)
$$\frac{1-2i}{4+3i}$$

2) Perform the operation and leave the result in the trigonometric form

$$\frac{6(\cos 40^{0} + i \sin 40^{0})}{7(\cos 100^{0} + i \sin 100^{0})}$$

Perform the indicated operations and write your answer in the form of a + bi: 3)

a)
$$3cis25^{\circ}.8cis200^{\circ}$$

c)
$$\frac{4cis190^{\circ}}{2cis70^{\circ}}$$

d)
$$\frac{12cis200^{\circ}}{3cis350^{\circ}}$$

- 4) Perform: $\frac{(\sqrt{3}-i)^{-1}}{(\sqrt{3}+i)^{-1}}$. Write your answer in standard form.
- Find the product of $z_1 = 1 + i\sqrt{3}$ and $z_2 = -\sqrt{3} + i$ in trigonometric form 5)
- Divide $z_1 = 1 + i\sqrt{3}$ by $z_2 = \sqrt{3} + i$ and write the answer in standard form 6)