Mathelpers

Natural Exponential & Logarithmic Functions

The Number e was first used by mathematician Leonard Euler to represent the base of natural logarithm in a letter to another mathematician, Christian Goldbach, in 1731.

In many applications the most convenient choice for a base is the irrational number $e \approx 2.718281828...$ this is called the natural base. The function $f(x) = e^x$ is called the natural exponential function.

All the properties and characteristics of an exponential function are applicable on the function $f(x) = e^x$

Properties of $f(x) = e^x$: Let x and y be positive numbers

- **1)** $e^0 = 1$ **2)** $e^x \bullet e^y = e^{x+y}$
- 3) $(e^{x})^{y} = e^{x \cdot y}$ 4) $\frac{e^{x}}{e^{y}} = e^{x - y}$

$$5) \quad \frac{1}{e^x} = e^{-x}$$

Natural Logarithmic Function

The function $f(x) = \log_e x = \ln x$, x > 0 is called the natural logarithmic function.

Every logarithmic function can be written in an equivalent exponential form and every exponential function can be written in an equivalent logarithmic form.

 $y = \ln x \Leftrightarrow x = e^y$

Properties of Natural Logarithms

 $\ln 1 = 0 \text{ because } e^0 = 1$ $\ln e = 1 \text{ because } e^1 = e$ $\ln e^x = x \text{ and } e^{\ln x} = x$ $\ln x = \ln y \iff x = y$

(Inverse Property) (One – to – One Property)

Logarithmic form	Exponential Form
$y = \ln x$	$x = e^{y}$
$y = \log_a x$	$x = a^{y}$

