Natural Exponential \& Logarithmic Functions

The Number e was first used by mathematician Leonard Euler to represent the base of natural logarithm in a letter to another mathematician, Christian Goldbach, in 1731.
In many applications the most convenient choice for a base is the irrational number $e \approx 2.718281828 \ldots$ this is called the natural base. The function $f(x)=e^{x}$ is called the natural exponential function.

All the properties and characteristics of an exponential function are
 applicable on the function $f(x)=e^{x}$
Properties of $f(x)=e^{x}$: Let x and y be positive numbers

1) $e^{0}=1$
2) $e^{x} \bullet e^{y}=e^{x+y}$
3) $\left(e^{x}\right)^{y}=e^{x \cdot y}$
4) $\frac{e^{x}}{e^{y}}=e^{x-y}$
5) $\frac{1}{e^{x}}=e^{-x}$

Natural Logarithmic Function

The function $f(x)=\log _{e} x=\ln x, \underline{x>0}$ is called the natural logarithmic function.

Every logarithmic function can be written in an equivalent exponential form and every exponential function can be written in an equivalent logarithmic form.
$y=\ln x \Leftrightarrow x=e^{y}$

Properties of Natural Logarithms

$\ln 1=0$ because $e^{0}=1$
$\ln e=1$ because $e^{1}=e$
$\ln e^{x}=x$ and $e^{\ln x}=x \quad$ (Inverse Property)
$\ln x=\ln y \Leftrightarrow x=y$
(One - to - One Property)

Logarithmic form	Exponential Form
$y=\ln x$	$x=e^{y}$
$y=\log _{a} x$	$x=a^{y}$

