Name:

Natural Exponential & Logarithmic Functions

- 1) Use the relationship $a' = e^{\left[\ln(a)'\right]}$ to convert each of the following eqautions to the natural base.
 - 1) $y = 1200(1.025)^t$
 - 2) $y = 2500(0.75)^t$
- 2) 1) Evaluate $e^{\ln 4 + \ln 5}$
 - 2) Express $4\ln 2 + \ln 3 + 2$ as a single logarithm
- 3) 1) Evaluate $e^{3\ln 2} \bullet e^{2\ln 3}$
 - 2) Express $2\ln 4 \ln 8 \ln 5$ as a single logarithm
- 4) Find the domain of each function
 - **1)** $f(x) = \ln(x+2)$ **2)** $g(x) = \ln(x-x^2)$
 - 3) $h(t) = \ln(1+t^2)$ 4) $y = \ln(4x-3)$
 - 5) $f(x) = \ln(1 \sin x)$ 6) $y = \frac{1}{\ln x}$
- 5) Simplify
 - 1) $\ln(e^{\ln(e^2)})$ 2) $e^{(\frac{1}{2})\ln 8}$ 3) $e^{-\ln 23}$
- 6) The number of bacteria in a colony increases exponentially and is modeled by $y = y_0 e^{kt}$, where t is measured in hours. At time t=0, there are 12,000 bacteris, and four hours later there are 50,000 bacteria. To the nearest 1000 bacteria, how many are present 10 hours after time 0?
- 7) Find the exponential function $y = Ce^{kt}$ that passes through the given points. (0,1), (3,5)

Mathelpers.com