## Mathelpers

## Mutually Exclusive Events

Rule 1: The addition rule is a result used to determine the probability that event $A$ or event $B$ occurs or both occur. The result is often written as follows, using set notation:
$\mathrm{P}(A$ or $B)=P(A \cup B)=P(A)+P(B)-P(A \cap B)$
where:
$P(A)=$ probability that event A occurs
$P(B)=$ probability that event B occurs
$P(A \cup B)=$ probability that event A or event B occurs
$P(A \cap B)=$ probability that event $A$ and event $B$ occur

Suppose we wish to find the probability of drawing either a king or a spade in a single draw from a pack of 52 playing cards.
We define the events $A=$ "draw a king" and $B=$ "draw a spade"
Since there are 4 kings in the pack and 13 spades, but 1 card is both a king and a spade, we have:

$$
\begin{aligned}
P(A \cup B) & =P(A)+P(B)-P(A \cap B) \\
= & \frac{4}{52}+\frac{13}{52}-\frac{1}{52} \\
= & \frac{16}{52}
\end{aligned}
$$

So, the probability of drawing either a king or a spade is: $\frac{16}{52}$
Rule 2: Mutually Exclusive Events: Two events are mutually exclusive (or disjoint) if it is impossible for them to occur together; they cannot happen at the same time.
Formally, two events $A$ and $B$ are mutually exclusive if and only if :

$$
A \cap B=\varnothing \quad \Rightarrow P(A \cap B)=0
$$

If $A$ and $B$ are mutually exclusive events then the probability of $A$ happening $O R$ the probability of $B$ happening is $P(A)+P(B)$.
$\mathrm{P}(\mathrm{A}$ or B$)=P(A \cup B)=P(A)+P(B)$
For example, if we toss a coin, either heads or tails might turn up, but not heads and tails at the same time.

Similarly, in a single throw of a die, we can only have one number shown at the top face. The numbers on the face are mutually exclusive events.

Example 1: Find the probability of having an even or an odd number when rolling a die.
Sample space $S=\{1,2,3,4,5,6\}$
Event A = "observe an odd number" = $\{1,3,5\}$
Event $B=$ "observe an even number" $=\{2,4,6\}$
$A \cap B=\varnothing=$ the empty set, so $A$ and $B$ are mutually exclusive.
$P($ AorB $)$
$=P(A)+P(B)$
$=\frac{3}{6}+\frac{3}{6}$
$=\frac{6}{6}$
$=1$
Note: Most of our statistics work is with mutually exclusive events: a variable has one value or another, but it can't have both. Either the population mean is greater than 62, or else it is less than or equal to 62 .

