Mutually Exclusive Events

Definition 1: Two events A and B of the same experiment E are said to be mutually exclusive if they have nothing in common. In other words, A and B will not happen at the same time.

For instance, let E be the experiment of picking a card randomly from a standard deck of 52 cards, let A be the event of picking a Diamond (\uparrow), and let B be the event of picking a Spade (\uparrow). Then clearly they are disjoint because we cannot find a card that is both a Diamond and a Spade.

Definition 2: The union of two events A and B is the event that occurs if either A or B or both occur on a single performance of the experiment. We denote the union of events A and B by the symbol $A \cup B . A \bigcup B$ consists of all the sample points that belong to A or B or both.

Definition 3: The intersection of two events A and B is the event that occurs if both A and B occur on a single performance of the experiment. We denote the intersection of events A and B by the symbol $A \cap B . A \cap B$ consists of all the sample points that belong to A and B.

Mathelpers

Rule 1: The probability of the union of events A and B is the sum of the probability of events A and B minus the probability of the intersection of events A and B, that is

$$
\mathrm{P}(A \bigcup B)=\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(A \cap B)
$$

If A and B are mutually exclusive events of the same experiment E, then

$$
P(A \text { or } B)=P(A)+P(B)
$$

Example 1: What is the probability that on one roll of a die, I get a 3 or a 4.
The events are mutually exclusive so the probability is: $P(3$ or 4$)=P(3)+P(4)=(1 / 6)+(1 / 6)=(2 / 6)$ $=.333$

Example 2: The table below lists the number of people who smokes and drinks coffee, use the information in the table to find the probability that:

	Coffee	No Coffee	Total
Smoker	60	40	100
Non- Smoker	115	85	200
Total	175	125	300

1) A randomly selected person from the sample either smokes or drinks coffee.

Event A: A person smokes
Event B: A person drinks coffee
These are not mutually exclusive events because some people smoke and drink coffee.
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
$P(A$ or $B)=\frac{100}{300}+\frac{175}{300}-\frac{60}{300}=\frac{215}{300}$
2) A randomly selected person from the sample is a non-smoker or drinks coffee.

Event A: A person is a non-smoker
Event B: A person drinks coffee
These are not mutually exclusive events because some non-smokers and drink coffee.
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
$P(A$ or $B)=\frac{200}{300}+\frac{175}{300}-\frac{115}{300}=\frac{260}{300}$

