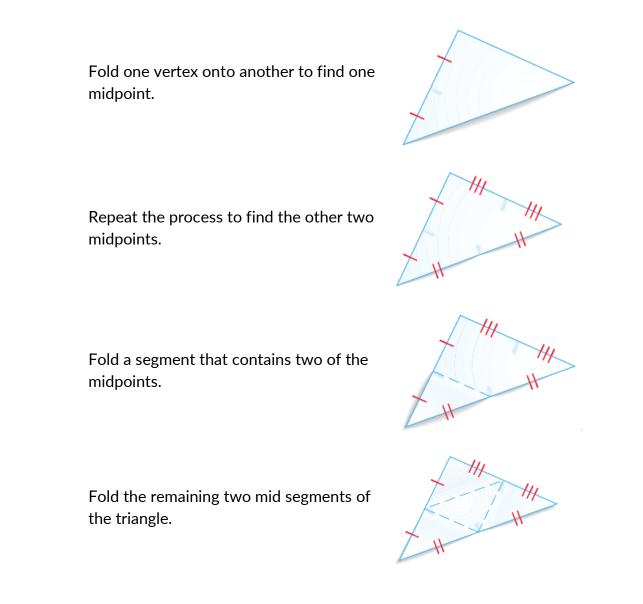
Mid-Segment Theorem

We studied four special types of segments of a triangle: perpendicular bisectors, angle bisectors, medians, and altitudes. Another special type of segment is called a *mid segment*. It is a segment that connects the midpoints of two sides of a triangle.

You can form the three mid segments of a triangle by tracing the triangle on paper, cutting it out, and folding it, as shown below.



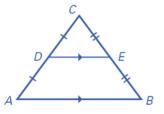
Definition 1: The **Mid Segment of a triangle** is a segment that connects the midpoints of two sides of a triangle.

Theorem 1: Mid Segment Theorem: the segment connecting the midpoints of two sides of a triangle is parallel to the third side and is equal to half its length.

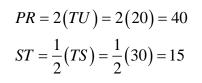
Mathelpers

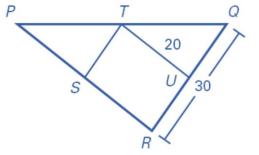
Given \triangle ABC with point D the midpoint of \overline{AC} and point E the midpoint of \overline{BC}

 $DE \Box AB$ $DE = \frac{1}{2}AB$



Example 1: \overline{ST} and \overline{TU} are mid segments of \Box PQR. Find PR and ST.

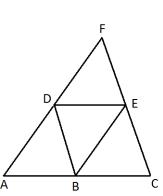




Proof:

Given: D is the midpoint of \overline{AF} E is the midpoint of \overline{FC} B is the midpoint of \overline{AC}

$$Prove: \square BDE \cong \square FDE$$



	A B C
Statements	Reasons
D is the midpoint of \overline{AF} B is the midpoint of \overline{AC}	Given
$BD = \frac{1}{2}FC = FE = EC$	Mid – Segments Theorem
$\overline{BD} \cong \overline{FE}$	Two segments of equal measures are congruent
E is the midpoint of \overline{FC} B is the midpoint of \overline{AC}	Given
$EB = \frac{1}{2}AF = AD = DF$	Mid – Segments Theorem
$\overline{EB} \cong \overline{DF}$	Two segments of equal measures are congruent
$\overline{DE} \cong \overline{DE}$	Reflexive property
$\Box BDE \cong \Box FDE$	SSS theorem