Mathelpers

Mean

Definition: The mean of a set of numerical values is the average of the set of values. It is obtained by dividing the sum of data by the number of observations.

$$
\bar{x}=\frac{\text { Sum of Data }}{\# \text { of Observations }}
$$

We can compute the mean for either population values or sample values.
Rule 1: If the values are from an entire population, then the mean of the values is called a population mean. It is usually denoted by μ (read as "mu").
Population: $\mu=\frac{\sum_{i=1}^{n} x_{i}}{N} \quad, \mathrm{~N}=$ number of data points
Rule 2: If the values are from a sample, then the mean of the values is called a sample mean. It is denoted by \bar{x} (read as "x-bar").
Sample: $\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \quad, \quad \mathrm{n}=$ number of data points
Example 1: What is the mean of the following sample values?
$\begin{array}{llllllll}7 & 9 & 11 & 6 & 13 & 6 & 6 & 11\end{array}$

To work out the mean, we apply the formula for sample values:
a) Add up all the numbers $7+9+11+6+13+6+6+3+11=72$
b) Divide the answer by how many numbers there are. There are 9 numbers.
$72 \div 9=8$
So the mean value is 8 .
Note: sometimes, you do not get a whole number.
Rule 3: Ungrouped Data: To calculate the mean of an ungrouped frequency distribution table, we
use the formula: $\bar{x}=\frac{\sum_{i=1}^{n} x_{i} f_{i}}{n}$
x_{i} : is the class value
f_{i} : is the frequency of the class
n : Total frequency
Rule 4: Grouped Data: To calculate the mean for a grouped frequency distribution table, we use the formula: $\bar{x}=\frac{\sum_{i=1}^{n} m_{i} f_{i}}{n}$
m_{i} : Midpoint of the interval
f_{i} : is the frequency of the class
n : Total frequency

