Name: _____

Logarithmic Functions

- 1) Find the logs to base 2 of:
 - (1)4
 - (2) 8
 - (3)2
 - (4) 1
 - $(5) \frac{1}{2}$
 - (6) 1/4
- 2) Find the logs to base 3 of:
 - 1) 9
 - 2) 81
 - 3) ½
 - **4)** ½7
 - 5) ½
 - **6)** 27
 - **7**) √3
- 3) Find the logs to base 10 of:
 - (1) 100
 - (2) 1000
 - (3) 10
 - (4) 1
 - (5) $\frac{1}{10}$
 - (6) 0.01

- 4) Use the rules of logs to split the following expressions up into separate logs (or numbers) as much as possible.
 - 1) $\log_{3} 3x$
 - 2) $\log_3 27x^2$
 - 3) $\log_3\left(\frac{x}{y}\right)$
 - **4)** $\log_3(x^2/a^2)$
 - $5) \quad \log_3(ax^n)$
 - 6) $\log_3(9a^x)$
 - 7) $\log_3(2x + 3y)$
- 5) Combine the logs in the following as far as possible, using the laws of logs.
 - 1) $\log_{10} x + \log_{10} (x 1)$
 - $2\log_{10} x + \log_{10} y$
 - 3) $\log_{10}(x+1) \log_{10}(x-1)$
 - 4) $3\log_{10} x + 2\log_{10} y$
- 6) Simplify
 - 1) $10^{\log_{10} 5}$
- 2) log₁₀ 100000
- 3) $\log_3\left(\frac{1}{9}\right)$
- 7) Use properties of logs to write the expression as a sum or difference or multiples of logarithms.
 - $1) \qquad \log \frac{9}{x}$

2) $\log \sqrt[3]{\frac{p}{a}}$

 $3) \qquad \log x^4 y^6$

4) $\log_5 x^3$