Limits

Suppose you are asked o sketch the graph of the function f given by: $f(x)=\frac{x^{3}-1}{x-1} ; x \neq 1$
For all values other than $x=1$, you can use standard curve sketching techniques. However, at $x=1$, it is not clear what to expect. To get an idea of the behavior of the graph of f near $x=1$, you can use two sets of x-values - one set that approaches 1 from the left and one set approaches 1 from the right.

x	0.9	0.99	0.999	1	1.001	1.01	1.1
$f(x)$	2.71	2.97	2.997	$?$	3.003	3.31	3.813

$f(x)$ annrnarhoc $?$

The graph has a gap at the point $(1,3)$. Although x cannot be equal to 1 but you can arbitrarily close to 1 , and as a result $f(x)$ arbitrarily close to 3 . Using the limit notation, you can write:
$\lim _{x \rightarrow 1} f(x)=3 \quad$ This is read as "the limit of $f(x)$ as x approaches 1 is 3 "
The limit of the function $f(x)$ as x approaches c is the number L. This limit is written as:

$$
\lim _{x \rightarrow c} f(x)=L
$$

Limits and Function Values

If the limit of a function f as x approaches c exists, this limit may not be equal to $f(c)$. In fact, $f(c)$ may not even be defined.
The existence or nonexistence of $f(x)$ at $x=c$ has no bearing on the existence of the limit of $f(x)$ as x approaches c.

Theorem 1: The Existence of a Limit: Let f be a function and let c and L be real numbers, The limit of $f(x)$ as x approaches c is L if and only if: $\lim _{x \rightarrow a^{+}} f(x)=L$ and $\lim _{x \rightarrow a^{-}} f(x)=L$

$$
\lim _{x \rightarrow a} f(x)=L \Leftrightarrow \lim _{x \rightarrow a^{+}} f(x)=L \text { and } \lim _{x \rightarrow a^{-}} f(x)=L
$$

Nonexistence of Limits

The limit of a function f as x approaches c may fail to exist if:

$>f(x)$ becomes infinitely large or infinitely small as x approaches c from either side.
$>f(x)$ approaches L as x approaches c from the right and $f(x)$ approaches $\mathrm{M}, M \neq L$, as x approaches c from the left.
$>f(x)$ oscillates infinitely many times between two numbers as x approaches c from either side.

Example 1: A Function that Approaches Infinity: Consider the function $f(x)=\frac{1}{x^{2}}$, the
$\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ does it exist?
As you can see from the graph x approaches 0 from either the left or the right, $f(x)$ increases without bound.
$f(x)$ is not approaching a real number L as x approaches 0 ,
Therefore you can conclude that the limit does not exist.

PART 1: Evaluating Limits Analytically

Theorem 2: Some Basic Limits:

Limit of a Constant: If d is a constant, then $\lim _{x \rightarrow c} d=d$.
Limit of the Identity Function: For every real number $c, \lim _{x \rightarrow c} x=c$

Theorem 3: Properties of Limits

Let a, and c are real numbers and let n be a positive integer and let f and g be functions with limits $\lim _{x \rightarrow c} f(x)=L$ and $\lim _{x \rightarrow c} g(x)=M$, then:

1) Scalar Multiple: The limit of the product of a constant and a function equals the constant times the limit of the function:

$$
\lim _{x \rightarrow a}[c \cdot f(x)]=c \cdot \lim _{x \rightarrow a} f(x)=c L
$$

2) Sum or Difference: The limit of the sum or difference of two functions equals the sum or difference of the limits of the functions:

$$
\lim _{x \rightarrow a}[f(x) \pm g(x)]=\lim _{x \rightarrow a} f(x) \pm \lim _{x \rightarrow a} g(x)=L \pm M
$$

3) Product: The limit of the product of two functions is the product of the limits of the functions

$$
\lim _{x \rightarrow a}[f(x) \bullet g(x)]=\left[\lim _{x \rightarrow a} f(x)\right] \bullet\left[\lim _{x \rightarrow a} g(x)\right]=L \bullet M
$$

4) Quotient: The limit of a quotient is the quotient of the limits of the numerator and denominator if the limit of the denominator is not zero

$$
\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)}=\frac{L}{M}, \text { if } \lim _{x \rightarrow a} g(x) \neq 0
$$

5) Power: The limit of a function raised to a power equals the limit of the function raised to the power

In particular:

$$
\lim _{x \rightarrow a}[\sqrt[n]{f(x)}]=\sqrt[n]{\lim _{x \rightarrow a} f(x)}=\sqrt[n]{L}
$$

Theorem 4: Limits of Polynomial Functions

If $f(x)$ is a polynomial function and c is any real number, then $\lim _{x \rightarrow c} f(x)=f(c)$.
In other words, the limit is the value of the polynomial function f at $x=c$.

Theorem 5: Limits of Rational Functions

Let $f(x)$ be a rational function given by $f(x)=\frac{p(x)}{q(x)}$ and let c be a real number such that $q(c) \neq 0$. Then $\lim _{x \rightarrow c} f(x)=f(c)=\frac{p(c)}{q(c)}$.

Theorem 6: Limit Theorem: If f and g are functions that have limits as x approaches c and $f(x)=g(x)$ for all $x \neq c$, then $\lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c} g(x)$.

Strategy for finding Limits

1) Learn to recognize which limit can be evaluated by direct substitution. (i.e. substitute with the value first)
2) If the limit of $f(x)$ as x approaches c cannot be evaluated by direct substitution, try to find a function g that agrees with f for all x other than $x=c$.
3) Apply the limit theorem (Theorem 5)

PART 2: One Sided Limits

Find: $\lim _{x \rightarrow 4} \sqrt{x-4}$
Based on the discussion done in previous sections we can say that $\lim _{x \rightarrow 4} \sqrt{x-4}=0$. However, $\lim _{x \rightarrow 4} \sqrt{x-4}=$ DNE (Does Not Exist). The domain of the expression will not allow the x to approach 4 from the left side, so 4 is approachable from one side only.

Notation: $x \rightarrow a^{+}$means x approaches a from the right-hand side of a. Hence, $x>a$.
$x \rightarrow a^{-}$means x approaches a from the left-hand side of a. Hence, $x<a$.

Definition 1: (Right-Hand Limit) Let f be a function defined on the interval ($a, a+r$), where $r>0$. (Note: the function f is defined on the right-hand side of $x=a$.) If as $x \rightarrow a^{+}, f(x) \rightarrow M$, then we write $\lim _{x \rightarrow a^{+}} f(x)=M$

Definition 2: (Left-Hand Limit) Let f be a function defined on the interval ($a-r, a$), where $r>0$. (Note: the function f is defined on the left-hand side of $x=a$.) If as $x \rightarrow a^{-}, f(x) \rightarrow N$, then we write $\lim _{x \rightarrow a^{-}} f(x)=N$

PART 3: Infinite Limits

A limit in which $f(x)$ increases or decreases without bound as x approaches a is called an infinite limit.

Let us check some examples in which we will study the behavior of the functions at specific values of x.

Therefore, $\lim _{x \rightarrow 0}-\frac{5}{x^{4}}=-\infty$

1) $g(x)=\frac{8}{x^{2}-2 x-8}$ near $x=-2$

The graph shows that the values of $f(x)$ increases without bound as x approaches -2 from the left and decreases without bound as x approaches -2 from the right.

Therefore, $\lim _{x \rightarrow 0}-\frac{5}{x^{4}}=-\infty$

Infinite Limits and Vertical Asymptotes

The vertical line $\mathbf{x}=\mathbf{c}$ is a vertical asymptote of the graph of the function f if at least one of the following is true:
$\lim _{x \rightarrow c^{-}} f(x)=\infty$
$\lim _{x \rightarrow c^{+}} f(x)=\infty$
$\lim _{x \rightarrow c} f(x)=\infty$
$\lim _{x \rightarrow c^{-}} f(x)=-\infty$
$\lim _{x \rightarrow c^{+}} f(x)=-\infty$
$\lim _{x \rightarrow c} f(x)=-\infty$

Limits at Infinity

Let f be a function that is defined for all $x>a$ for some number a. If as x takes larger and larger positive values, increasing without bound, the corresponding values of $f(x)$ get very close, and are possibly equal to, a single real number L and the values of $f(x)$ can be made arbitrarily close (as close as you want) to L by taking large enough values of x, then the limit of $f(x)$ as x approaches infinity is $L . \lim _{x \rightarrow \infty} f(x)=L$

Mathelpers

Theorem 7: Limit Theorem: If c is a constant, then for each positive rational number n ,
$\lim _{x \rightarrow \infty} \frac{c}{x^{n}}=0$ and $\lim _{x \rightarrow-\infty} \frac{c}{x^{n}}=0$
Limits of Rational Functions: Let $p(x), h(x)$ be polynomials and n is the degree of $p(x), m$ is the degree of $h(x)$:

1) If $\mathrm{n}=\mathrm{m}$, then $\lim _{x \rightarrow \infty} \frac{p(x)}{h(x)}=$ coefficients of largest power term
2) If $\mathrm{n}<\mathrm{m}$, then $\lim _{x \rightarrow \infty} \frac{p(x)}{h(x)}=0$
3) If $\mathrm{n}>\mathrm{m}$, then $\lim _{x \rightarrow \infty} \frac{p(x)}{h(x)}=\infty$

Limits at infinity and Horizontal Asymptotes

The horizontal line $\mathbf{y}=\mathbf{L}$ is a horizontal asymptote of the graph of the function f if $\lim _{x \rightarrow \infty} f(x)=L$

