Name:

\qquad

Limits

Exercise 1: Find the value(s) of c such that the limit of $f(x)$ as x approaches 2 exists

$$
f(x)= \begin{cases}c x^{2}-3 & x \leq 2 \\ c x+2 & x>2\end{cases}
$$

Exercise 2: Find the value(s) of k such that $\lim _{x \rightarrow 1} f(x)$ exists

$$
f(x)= \begin{cases}k^{2} x & x \geq 1 \\ 3 k x-2 & x<1\end{cases}
$$

Exercise 3: Determine a value of c such that $\lim _{x \rightarrow 1} I(x)$ exists

$$
I(x)=\frac{x^{2}-4 x+c}{x-1}
$$

Exercise 4: Given that $h(x)=\frac{n(x)}{x-1}$

1) Determine a quadratic function $n(x)$ such that the limit of $h(x)$ as x approaches 1 exists.
2) Determine a quadratic function $n(x)$ such that $\lim _{x \rightarrow 1} h(x)=27$

Exercise 5: Using the given graph of $g(x)$, find the following left- and right-hand limits.

1. $\lim _{x \rightarrow 0^{-}} g(x)$
2. $\lim _{x \rightarrow 0^{+}} g(x)$
3. $\lim _{x \rightarrow 1^{-}} g(x)$
4. $\lim _{x \rightarrow+^{+}} g(x)$
