Name:

\qquad

Law of Sines

1) Solve each of the following triangles $A B C$:
2) $a=125, A=54^{\circ} 40^{\prime}, B=65^{\circ} 10^{\prime}$
3) $b=215, c=150, B=42^{\circ} 40^{\prime}$
4) $\mathrm{b}=321, \mathrm{~A}=75^{\circ} 20^{\prime}, \mathrm{C}=38^{\circ} 30^{\prime}$
5) $b=40.2, a=31.5, B=112^{\circ} 20^{\prime}$
6) $b=51.5, a=62.5, B=40^{\circ} 40^{\prime}$
7) Is it possible to have a triangle with the following dimensions? If yes, solve for the missing sides and angles of the triangle; if no, explain why not.
8) $A=122^{\circ}, C=18^{\circ}, c=21 \mathrm{~cm}$
9) $\mathrm{A}=46.5^{0}, a=7.9 \mathrm{~cm}, \mathrm{~b}=13.1 \mathrm{~cm}$
10) $B=112{ }^{\circ}, C=19^{\circ}, c=23 \mathrm{~cm}$
11) Find, if possible, the missing sides and angles in each of the three triangles whose measurements are given below:
12) Triangle $A B C$ in which $\angle A=78^{\circ}, \angle B=65^{\circ}$ and $A B=5 \mathrm{~cm}$
13) Triangle $A B C$ in which $\angle C=33^{\circ}, B C=6 \mathrm{~cm}$ and $A B=4 \mathrm{~cm}$
14) Triangle $A B C$ in which $\angle C=40^{\circ}, A B=9 \mathrm{~cm}$ and $B C=5 \mathrm{~cm}$
15) Solve the triangle when $a=12, b=31, \mathrm{~A}=20.5$
16) In $\triangle H E Y, \angle H=125^{\circ}$ and $h=\frac{5}{4} y$. Find the measures of $\angle E$ and $\angle Y$
17) In $\triangle F U N, \angle F=100^{\circ}$ and $u=\frac{2}{3} f$. Find the measures of $\angle U$ and $\angle N$.
