Law of Cosines

The law of cosines is a formula that relates the three sides of a triangle to the cosines of a given angle. This formula allows us to calculate the side length of non-right triangle as long as you know two sides and an angle and to calculate any angle of a triangle if you know all three side lengths.

The two common problems types that are suitable for the law of cosines are.
Problem type 1: when you know the lengths of 2 sides of a triangle and the angle in between the two sides
Problem type 2: when you know the lengths of three sides of a triangle and want to know a particular angle

Triangle $A B C$ at the right does not contain a right angle. A perpendicular is dropped from vertex B. It can now be observed that:
$\sin A=\frac{h}{c} \Rightarrow h=c \bullet \sin A$
$\cos A=\frac{r}{c} \Rightarrow r=c \bullet \cos A$

Using the Pythagorean Theorem in triangle CBD, we have: $a^{2}=h^{2}+(b-r)^{2}$.
Substituting for h and r we have:

$a^{2}=(c \sin A)^{2}+(b-c \cos A)^{2}$
$\Rightarrow a^{2}=c^{2} \sin ^{2} A+b^{2}-2 b c \cos A+c^{2} \cos ^{2} A$
$\Rightarrow a^{2}=c^{2}\left(\sin ^{2} A+\cos ^{2} A\right)+b^{2}-2 b c \cos A \quad\left\{\sin ^{2} A+\cos ^{2} A=1\right\}$
$\Rightarrow a^{2}=c^{2}+b^{2}-2 b c \cos A$
This same process could be used to produce other lettered statements of this law.
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$c^{2}=a^{2}+b^{2}-2 a b \cos C$

Law 1: Law of Cosines

$$
\begin{aligned}
& c^{2}=a^{2}+b^{2}-2 a b \cos C \\
& b^{2}=a^{2}+c^{2}-2 a c \cos B \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

Two Sides and the Included Angle

To find the other side we use the Law of Cosines.
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$b^{2}=a^{2}+c^{2}-2 a c \cos B$
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
It is important to understand that there is only one Law of Cosines even though three "laws" have been listed. All the three are equivalent to each other.

Example 1: A triangle has sides of 4 and 9 with an included angle of 30°. What are the other 2 angles and the length of the other side?

Let's say side $\mathrm{a}=4$ and side $\mathrm{b}=9$ and angle $m \angle C=30^{\circ}$
Using the Law of Cosines:
$c^{2}=a^{2}+b^{2}-2 a b \cos C$
$\Rightarrow c^{2}=4^{2}+9^{2}-2 \bullet 4 \bullet 9 \cos 30^{0}$
$\Rightarrow c^{2}=16+81-72\left(\frac{\sqrt{3}}{2}\right)$
$\Rightarrow c^{2}=34.6458$
$\Rightarrow c=5.886$

Using the Law of Sines:
$\frac{\sin A}{a}=\frac{\sin B}{b}=\frac{\sin C}{c}$
$\Rightarrow \frac{\sin 30^{\circ}}{9}=\frac{\sin A}{4}$
$\Rightarrow \sin A=0.339$
$\Rightarrow m \angle A=19.864^{0}$
Now, we still need to find $m \angle B$:
$m \angle B=180^{\circ}-m \angle A-m \angle C$
$\Rightarrow m \angle B=180^{\circ}-19.864^{\circ}-30^{\circ}$
$\Rightarrow m \angle B=130.136^{0}$

All Three Sides Of A Triangle

We use the Law of Cosines when we know all three sides of a triangle. To find the measures of the three missing angles we derive the formulas below from the law of cosines, let us do one
derivation:
$a^{2}=b^{2}+c^{2}-2 b c \cos A$
$\Rightarrow 2 b c \cos A=b^{2}+c^{2}-a^{2}$
$\Rightarrow \cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
Therefore,
$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
$\cos B=\frac{a^{2}+c^{2}-b^{2}}{2 a c}$
$\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}$

Rule: Heron's Formula: The area of a triangle with sides a, b, and c is given by $A=\sqrt{s(s-a)(s-b)(s-c)}$ where s is one-half the perimeter; that is $s=\frac{1}{2}(a+b+c)$.

