Mathelpers

L'Hopital's Rule

Suppose that *f* and *g* are differentiable functions at x = a and that is $\lim_{x \to a} \frac{f(x)}{g(x)}$ an indeterminate form of the type $\frac{0}{0}$; that is, $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$. Since *f* and *g* are differentiable functions at x = a, then *f* and *g* are continuous at x = a; that is, $f(a) = \lim_{x \to a} f(x) = 0$ and $g(a) = \lim_{x \to a} g(x) = 0$.

Furthermore, since f and g are differentiable functions at x = a, then $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$ and

$$g'(a) = \lim_{x \to a} \frac{g(x) - g(a)}{x - a}.$$

Thus, if $g'(a) \neq 0$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)} = \lim_{x \to a} \frac{\frac{f(x) - f(a)}{x - a}}{\frac{g(x) - g(a)}{x - a}} = \frac{f'(a)}{g'(a)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$ if f' and g'

are continuous at x = a.

This illustrates a special case of the technique known as L'Hospital's Rule.

L'Hospital's Rule: Suppose that f and g are differentiable functions on an open interval containing x = a, except possibly at x = a, and that $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$. If $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ has a finite limit, or if this limit is $(+\infty)$ or $(-\infty)$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$. Moreover, this statement is also true in the case of a limit as $x \to a^-, x \to a^+, x \to -\infty$, or as $x \to +\infty$.

In the following examples, we will use the following three-step process:

Step 1: Check that the limit of $\frac{f(x)}{g(x)}$ is an indeterminate form of type $\frac{0}{0}$. If it is not, then **L'Hospital's Rule** cannot be used. **Step 2:** Differentiate *f* and *g* separately. [*Note*: **Do not differentiate** $\frac{f(x)}{g(x)}$ **using the quotient rule!**] **Step 3:** Find the limit of $\frac{f'(x)}{g'(x)}$. If this limit is finite, $+\infty$, or $-\infty$, then it is equal to the limit of $\frac{f(x)}{g'(x)}$. If this limit form of type $\frac{0}{0}$, then simplify $\frac{f'(x)}{g'(x)}$ algebraically and apply **L'Hospital's Rule** again.

Mathelpers

Example 1: Find:

1)
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \frac{0}{0}$$
Using L'Hopital's Rule:
$$\Rightarrow \lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} \frac{2x}{1} = 2(2) = 4$$

2)
$$\lim_{x \to 0} \frac{\tan 3x}{\sin 2x}$$
$$\lim_{x \to 0} \frac{\tan 3x}{\sin 2x} = \frac{0}{0}$$
Using L'Hopital's Rule:
$$\Rightarrow \lim_{x \to 0} \frac{\tan 3x}{\sin 2x} = \lim_{x \to 0} \frac{3\sec^2 3x}{2\cos 2x} = \frac{3(1)}{2(1)} = \frac{3}{2}$$

3)
$$\lim_{h \to 0} \frac{\sqrt[3]{8+h-2}}{h} = \frac{0}{0}$$

Using L'Hopital's Rule:
$$\Rightarrow \lim_{h \to 0} \frac{\sqrt[3]{8+h-2}}{h} = \lim_{h \to 0} \frac{\frac{1}{3}(8+h)^{-\frac{2}{3}}(1)}{1} = \lim_{h \to 0} \frac{1}{3(8+h)^{\frac{2}{3}}} = \frac{1}{3(8)^{\frac{2}{3}}} = \frac{1}{12}$$

4)
$$\lim_{x \to \frac{\pi}{3}} \frac{\cos x - \frac{1}{2}}{x - \frac{\pi}{3}} = \frac{0}{0}$$

Using L'Hopital's Rule:

$$\Rightarrow \lim_{x \to \pi/3} \frac{\cos x - \frac{1}{2}}{x - \pi/3} = \lim_{x \to \pi/3} \frac{-\sin x}{1} = -\sin\left(\frac{\pi}{3}\right) = -\frac{\sqrt{3}}{2}$$

Mathelpers.com

Mathelpers

5)
$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2}$$

$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \frac{0}{0}$$
Using L'Hopital's Rule:

$$\Rightarrow \lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \frac{0}{0}$$
Using L'Hopital's Rule:

$$\Rightarrow \lim_{x \to 0} \frac{e^x - x - 1}{x^2} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \frac{0}{0}$$
Using L'Hopital's Rule:

$$\lim_{x \to 0} \frac{e^x - 1}{2x} = \lim_{x \to 0} \frac{e^x - 1}{2x} = \frac{1}{2}$$
6)
$$\lim_{x \to \infty} \frac{\frac{1}{2x}}{\sin(\frac{1}{2x})} = \frac{0}{0}$$
Using L'Hopital's Rule:

$$\Rightarrow \lim_{x \to \infty} \frac{\frac{1}{2x}}{\sin(\frac{1}{2x})} = \frac{0}{0}$$
Using L'Hopital's Rule:

$$\Rightarrow \lim_{x \to \infty} \frac{\frac{1}{2x}}{\sin(\frac{1}{2x})} = \frac{0}{0}$$
Using L'Hopital's Rule:

$$\Rightarrow \lim_{x \to \infty} \frac{\frac{1}{2x}}{\sin(\frac{1}{2x})} = \lim_{x \to \infty} \frac{-2x}{\cos(\frac{1}{2x})} = \lim_{x \to \infty} \frac{2x}{\cos(\frac{1}{2x})} = \frac{0}{1} = 0$$
L'Hospital's Rule for Form $\frac{\infty}{\infty}$
Suppose that f and g are differentiable functions on an open interval containing $x = a$, except possibly at $x = a$, and that $\lim_{x \to \infty} f(x) = \infty$ and $\lim_{x \to \infty} g(x) = 0$. If $\lim_{x \to \infty} \frac{f(x)}{f(x)}$ has a finite limit, or if this l

possibly at x = a, and that $\lim_{x \to a} f(x) = \infty$ and $\lim_{x \to a} g(x) = 0$. If $\lim_{x \to a} \frac{f'(x)}{g'(x)}$ has a finite limit, or if this limit is $(+\infty)$ or $(-\infty)$, then $\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$. Moreover, this statement is also true in the case of a limit as $x \to a^-, x \to a^+, x \to -\infty$, or as $x \to +\infty$.

Mathelpers.com

Indeterminate Form of the Type $0\cdot\infty$

Indeterminate forms of the type $0 \cdot \infty$ can sometimes be evaluated by rewriting the product as a quotient, and then applying **L'Hospital's Rule** for the indeterminate forms of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Indeterminate Form of the Type $\infty - \infty$

A limit problem that leads to one of the expressions $(+\infty) - (+\infty)$, $(-\infty) - (-\infty)$, $(+\infty) + (-\infty)$, $(-\infty) + (+\infty)$ is called an **indeterminate form of type** $\infty - \infty$. Such limits are indeterminate because the two terms exert conflicting influences on the expression; one pushes it in the positive direction and the other pushes it in the negative direction. However, limits problems that lead to one the expressions $(+\infty) + (+\infty)$, $(+\infty) - (-\infty)$, $(-\infty) + (-\infty)$, $(-\infty) - (+\infty)$ are not indeterminate, since the two terms work together (the first two produce a limit of $+\infty$ and the last two produce a limit of $-\infty$). Indeterminate forms of the type $\infty - \infty$ can sometimes be evaluated by combining the terms and manipulating the result to produce an indeterminate form of type $\frac{0}{0}$ or $\frac{\infty}{\infty}$.

Indeterminate Forms of the Type $0^0, \infty^0, 1^\infty$

Limits of the form $\lim_{x\to a} [f(x)]^{g(x)} \{ or \lim_{x\to\infty} [f(x)]^{g(x)} \}$ frequently give rise to indeterminate forms of the types $0^0, \infty^0, 1^\infty$. These indeterminate forms can sometimes be evaluated as follows:

 $y = [f(x)]^{g(x)}$ ln $y = \ln[f(x)]^{g(x)} = g(x)\ln[f(x)]$ lim $[\ln y] = \lim_{x \to a} \{g(x)\ln[f(x)]\}$

The limit on the right hand side of the equation will usually be an indeterminate limit of the type $0 \cdot \infty$. Evaluate this limit using the technique previously described. Assume that $\lim_{x \to a} \{g(x) \ln[f(x)]\} = L$.

Finally, $\lim_{x \to a} [\ln y] = L \Longrightarrow \ln \left[\lim_{x \to a} y \right] = L \Longrightarrow \lim_{x \to a} y = e^{L}$.

Mathelpers.com

Grade 12