Independent Events

Definition 1: Two events are independent if the occurrence of one of the events gives us no information about whether or not the other event will occur; that is, the events have no influence on each other.

Rule 1: In probability theory we say that two events, A and B, are independent if the probability that they both occur is equal to the product of the probabilities of the two individual events. That is: $P(A$ and $B)=P(A \cap B)=P(A) \times P(B)$

For instance, when you draw a card from a standard deck, there are just as many face cards in the hearts suit as in any other suit. Therefore "drawing a heart" and "drawing a face card" are independent events.

The idea of independence can be extended to more than two events.
Rule 2: A and B are independent; A and C are independent and B and C are independent (pair wise independence):
$P(A$ and B and $C)=P(A \cap B \cap C)=P(A) \times P(B) \times P(C)$

Example 1: A man and a woman each have a pack of 52 playing cards. Each draws a card from his/her pack. Find the probability that each draw the ace of clubs.
We define the events:
$\mathrm{A}=$ probability that a man draws ace of clubs $=\frac{1}{52}$
$B=$ probability that a woman draws ace of clubs $=\frac{1}{52}$
Clearly events A and B are independent so:

$$
\begin{aligned}
& P(A \cap B) \\
& =P(A) \times P(B) \\
& =\frac{1}{52} \times \frac{1}{52} \\
& =0.00037
\end{aligned}
$$

That is, there is a very small chance that the man and the woman will both draw the ace of clubs.

