Implicit Differentiation

An explicit function is a function whose dependent variable is completely defined in terms of its independent variable(s) in one equation. For example: if y is the dependent variable and $x_{1}, x_{2}, \ldots, x_{n}$ are the independent variables then $y=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.

An implicit function is a function whose dependent variable cannot be completely defined in terms of its independent variable(s) in one equation. For example: if y is the dependent variable and $x_{1}, x_{2}, \ldots, x_{n}$ are the independent variables then $f\left(x_{1}, x_{2}, \ldots, x_{n}, y\right)=0$.

To find the derivative $\frac{d y}{d x}$ of an implicit function requires us to use a process called implicit differentiation.

Use the following Steps to differentiate a function implicitly: $\frac{d y}{d x}=$?

1) Simplify the equation if possible.
2) Differentiate both sides of the equation with respect to x. Use all the differentiation rules, be careful to use the Chain Rule when differentiating expressions involving y.
a) Find $\frac{d}{d x}$ of each addend of the function containing only the variable x.
b) For terms only containing the variable y, find $\frac{d}{d x}[f(y)]=\left[\frac{d}{d y}(f(y))\right] \cdot \frac{d y}{d x}$.
c) For terms containing both x and y variables, use the product and chain rules.
3) Solve for $\frac{d y}{d x}$.

Note: It might be helpful to substitute $f(x)$ into the equation for y before differentiating with respect to x. This will remind you when you must use the generalized forms of the Chain Rule. Since $f^{\prime}(x)=\frac{d y}{d x}$, you differentiate with respect to x and substitute y for $f(x)$ and $\frac{d y}{d x}$ for $f^{\prime}(x)$. Then you can solve for $\frac{d y}{d x}$.

Example 1: Use implicit differentiation to find y^{\prime}

$$
\begin{aligned}
& x^{2}+y^{2}=25 \\
& \Rightarrow x^{2}+[f(x)]^{2}=25 \\
& \Rightarrow \frac{d}{d x}\left(x^{2}+[f(x)]^{2}\right)=\frac{d}{d x}(25) \\
& \Rightarrow 2 x+2[f(x)] f^{\prime}(x)=0 \\
& \Rightarrow f^{\prime}(x)=\frac{-2 x}{2[f(x)]} \\
& \Rightarrow y^{\prime}=\frac{d y}{d x}=\frac{-x}{y}
\end{aligned}
$$

