Name: _____

Higher Order Derivatives

1) Let
$$y = \sin^{-1} x$$
. Find $\frac{d^2 y}{dx^2}$.

- 2) Prove that $y = e^{-kx}(a\cos x + b\sin x)$ satisfies the equation $y'' + 2ky' + (k^2 + 1)y = 0$.
- 3) 1) Prove that if $y = x^2 \cos x$, then $x^2 \frac{d^2 y}{dx^2} 4x \frac{dy}{dx} + (x^2 + 6)y = 0$.
 - 2) Deduce that when x = 0, $(n-2)(n-3)\frac{d^n y}{dx^n} + n(n-1)\frac{d^{n-2} y}{dx^{n-2}} = 0$
- 4) Given that $x = (t + 2)e^{3t}$:
 - 1) Find:
 - i) $\frac{dx}{dt}$
 - ii) $\frac{d^2x}{dt^2}$
 - 2) Show that: $\frac{d^2x}{dt^2} 6\frac{dx}{dt} + 9x = 0$
- 5) Given that $x = e^{kt}$, where k stands for some constant number:
 - 1) Find:
 - i) $\frac{dx}{dt}$
 - ii) $\frac{d^2x}{dt^2}$
 - 2) If $\frac{d^2x}{dt^2} 2\frac{dx}{dt} 3x = 0$ find the two possible values of k
- 6) If $x = Ae^{3t} + Be^{-t}$, where A and B are standing for constant numbers, show that: $\frac{d^2x}{dt^2} 2\frac{dx}{dt} 3x = 0$

7) Find the second derivative of the function.

(1)
$$f(x) = 2x^2 + \sin 2x$$

(2)
$$y = \tan x$$

8) If
$$f(x) = x^2 + 2x - \frac{3}{x} + 5$$
, find $f^{(4)}(x)$

9) If
$$f(x) = x^2 + 2x - \frac{3}{x} + 5$$
, find $f^{(4)}(x)$.

10) A ball is thrown straight down from the top of a building. Its distance from the ground is given by the position function $s(t) = 220 - 22t - 16t^2$.

Find its velocity and acceleration after 3 seconds.