Half Angles and Power Reducing Formulas

Half Angle Formula - Sine

Now, if we let $\theta = \frac{\alpha}{2}$ then $2\theta = \alpha$ and our formula becomes: $\cos \alpha = 1 - 2\sin^2\left(\frac{\alpha}{2}\right)$

We now solve for $sin\left(\frac{\alpha}{2}\right)$ (that is, we get $sin\left(\frac{\alpha}{2}\right)$ on the left of the equation and everything else on the right):

$$2\sin^{2}\left(\frac{\alpha}{2}\right) = 1 - \cos\alpha$$
$$\sin^{2}\left(\frac{\alpha}{2}\right) = \frac{1 - \cos\alpha}{2} \Longrightarrow \sin\left(\frac{\alpha}{2}\right) = \pm\sqrt{\frac{1 - \cos\alpha}{2}}$$

Rule 1: sine of a half-angle identity:

 $\sin\left(\frac{\alpha}{2}\right) = \pm \sqrt{\frac{1 - \cos\alpha}{2}}$

The sign of $\sin \frac{\alpha}{2}$ depends on the quadrant in which $\frac{\alpha}{2}$ lies.

X If $\frac{\alpha}{2}$ is in the **first or second quadrants**, the formula uses the positive case:

$$\sin\left(\frac{\alpha}{2}\right) = \sqrt{\frac{1 - \cos\alpha}{2}}$$

X If $\frac{\alpha}{2}$ is in the **third or fourth quadrants**, the formula uses the negative case:

$$\sin\left(\frac{\alpha}{2}\right) = -\sqrt{\frac{1-\cos\alpha}{2}}$$

Half Angle Formula - Cosine

Using a similar process, with the same substitution of $\theta = \frac{\alpha}{2}$ (so $2\theta = \alpha$) we substitute into the

identity:
$$\cos 2\theta = 2\cos^2 \theta - 1$$

We obtain:
 $\cos 2\left(\frac{\alpha}{2}\right) = 2\cos^2 \frac{\alpha}{2} - 1$
 $\cos \alpha = 2\cos^2 \frac{\alpha}{2} - 1$

Mathelpers

Reverse the equation: $2\cos^{2}\frac{\alpha}{2} - 1 = \cos \alpha$ Add 1 to both sides: $2\cos^{2}\frac{\alpha}{2} = 1 + \cos \alpha$ Divide both sides by 2: $\cos^{2}\frac{\alpha}{2} = \frac{1 + \cos \alpha}{2}$ Solving for $\cos(\frac{\alpha}{2})$, we obtain: $\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos \alpha}{2}}$

Rule 2: Cosine of a half-angle identity:

 $\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}}$

As before, the sign we need depends on the quadrant.

 \approx If $\frac{\alpha}{2}$ is in the **first or fourth quadrants**, the formula uses the positive case:

$$\cos\frac{\alpha}{2} = \sqrt{\frac{1+\cos\alpha}{2}}$$
$$\frac{\alpha}{2}$$

X If ² is in the **second or third quadrants**, the formula uses the negative case: $\cos \frac{\alpha}{2} = -\sqrt{\frac{1+\cos \alpha}{2}}$

Example 1: Let: $\alpha = \frac{\pi}{2}$ and $\beta = \beta$, verify that $\cos\left(\frac{\pi}{2} + \beta\right) = -\sin\beta$

Find the value of cos 15°, using the ratios of 30° only.

$$\frac{\sqrt{3}}{2} = 2\cos^2 15^0 - 1$$

 $\cos^{2} 15^{0} = \frac{\frac{\sqrt{3}}{2} + 1}{2}$ $\cos^{2} 15^{0} = \frac{\sqrt{3} + 2}{4}$ $\cos 15^{0} = \pm \sqrt{\frac{\sqrt{3} + 2}{4}}$ But 15⁰ is in Quadrant I $\Rightarrow \cos 15^{0} = \pm \sqrt{\frac{\sqrt{3} + 2}{4}}$ $\Rightarrow \cos 15^{0} = \pm \sqrt{\frac{\sqrt{3} + 2}{4}}$

Mathelpers

Rule 3: The following identities are true for all values for which they are defined and they are called power reducing formulas:

$$\begin{aligned} & \times \sin^2 \theta = \frac{1 - \cos 2\theta}{2} \\ & \times \cos^2 \theta = \frac{1 + \cos 2\theta}{2} \\ & \times \tan^2 \theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta} \end{aligned}$$

 $\cot^2 \theta = \frac{1 + \cos 2\theta}{1 - \cos 2\theta}$

