Half Angles and Power Reducing Formulas

Half Angle Formula - Sine

Now, if we let $\theta=\frac{\alpha}{2}$ then $2 \theta=\alpha$ and our formula becomes: $\cos \alpha=1-2 \sin ^{2}\left(\frac{\alpha}{2}\right)$
We now solve for $\sin \left(\frac{\alpha}{2}\right)$ (that is, we get $\sin \left(\frac{\alpha}{2}\right)$ on the left of the equation and everything else on the right):
$2 \sin ^{2}\left(\frac{\alpha}{2}\right)=1-\cos \alpha$
$\sin ^{2}\left(\frac{\alpha}{2}\right)=\frac{1-\cos \alpha}{2} \Rightarrow \sin \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{2}}$
Rule 1: sine of a half-angle identity:

$$
\sin \left(\frac{\alpha}{2}\right)= \pm \sqrt{\frac{1-\cos \alpha}{2}}
$$

The sign of $\sin \frac{\alpha}{2}$ depends on the quadrant in which $\frac{\alpha}{2}$ lies.
If $\frac{\alpha}{2}$ is in the first or second quadrants, the formula uses the positive case:

$$
\sin \left(\frac{\alpha}{2}\right)=\sqrt{\frac{1-\cos \alpha}{2}}
$$

If $\frac{\alpha}{2}$ is in the third or fourth quadrants, the formula uses the negative case:

$$
\sin \left(\frac{\alpha}{2}\right)=-\sqrt{\frac{1-\cos \alpha}{2}}
$$

Half Angle Formula - Cosine

Using a similar process, with the same substitution of $\theta=\frac{\alpha}{2}$ (so $2 \theta=\alpha$) we substitute into the identity: $\cos 2 \theta=2 \cos ^{2} \theta-1$
We obtain:
$\cos 2\left(\frac{\alpha}{2}\right)=2 \cos ^{2} \frac{\alpha}{2}-1$
$\cos \alpha=2 \cos ^{2} \frac{\alpha}{2}-1$

Reverse the equation: $2 \cos ^{2} \frac{\alpha}{2}-1=\cos \alpha$
Add 1 to both sides: $2 \cos ^{2} \frac{\alpha}{2}=1+\cos \alpha$
Divide both sides by 2: $\cos ^{2} \frac{\alpha}{2}=\frac{1+\cos \alpha}{2}$
Solving for $\cos \left(\frac{\alpha}{2}\right)$, we obtain: $\cos \frac{\alpha}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}}$

Rule 2: Cosine of a half-angle identity:
$\cos \frac{\alpha}{2}= \pm \sqrt{\frac{1+\cos \alpha}{2}}$
As before, the sign we need depends on the quadrant.
\& If $\frac{\alpha}{2}$ is in the first or fourth quadrants, the formula uses the positive case:
$\cos \frac{\alpha}{2}=\sqrt{\frac{1+\cos \alpha}{2}}$
X If $\frac{\alpha}{2}$ is in the second or third quadrants, the formula uses the negative case:

$$
\cos \frac{\alpha}{2}=-\sqrt{\frac{1+\cos \alpha}{2}}
$$

Example 1: Let: $\alpha=\frac{\pi}{2}$ and $\beta=\beta$, verify that $\cos \left(\frac{\pi}{2}+\beta\right)=-\sin \beta$
Find the value of $\cos 15^{\circ}$, using the ratios of 30° only.
$\frac{\sqrt{3}}{2}=2 \cos ^{2} 15^{\circ}-1$
$\cos ^{2} 15^{0}=\frac{\frac{\sqrt{3}}{2}+1}{2}$
$\cos ^{2} 15^{\circ}=\frac{\sqrt{3}+2}{4}$
$\cos 15^{\circ}= \pm \sqrt{\frac{\sqrt{3}+2}{4}}$ But 15° is in Quadrant I
$\Rightarrow \cos 15^{\circ}=+\sqrt{\frac{\sqrt{3}+2}{4}}$
$\Rightarrow \cos 15^{\circ}=+\frac{\sqrt{\sqrt{3}+2}}{2}$

Rule 3: The following identities are true for all values for which they are defined and they are called power reducing formulas:

X $\sin ^{2} \theta=\frac{1-\cos 2 \theta}{2}$
R $\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}$
ฬ $\tan ^{2} \theta=\frac{1-\cos 2 \theta}{1+\cos 2 \theta}$
$\cot ^{2} \theta=\frac{1+\cos 2 \theta}{1-\cos 2 \theta}$

