Graphs of Tangent and Cotangent Functions

Recall that the domain of the tangent function $y=\tan (x)$ consists of all numbers $x \neq(2 n+1) \frac{\pi}{2}$; where n is any integer. The range consists of the interval $(-\infty, \infty)$.

Also, the tangent function is periodic of period π : Thus, we will sketch the graph on an interval of length π and then complete the whole graph by repetition. The interval we consider is the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ since this interval is of length π and the function is defined for any number inside this interval.
The tangent function is an odd function, i.e. $-\tan (x)=\tan (-x)$. Consequently, the graph of $y=\tan (x)$ is symmetric with respect to the origin.
First, we will consider the behavior of the tangent function to the right $-\frac{\pi}{2}$ and to the left of $\frac{\pi}{2}$ since the tangent function is not defined at these values. For this purpose, we construct the following table:

x	$-\frac{\pi}{2}$	-1.57	-1.5	-1.4	0	1.4	1.5	1.57	$\frac{\pi}{2}$
$\tan x$	undefined	-1255.77	-14.10	-5.80	0	5.80	14.10	1255.77	undefined

It follows that as x approaches $-\frac{\pi}{2}$ from the right the tangent function decreases without bound whereas it increases without bound when x gets closer to $\frac{\pi}{2}$ from the left.

We say that the vertical lines $x= \pm \frac{\pi}{2}$ are vertical asymptotes. In general, the vertical asymptotes for the graph of the tangent function consist of the zeros of the cosine function, i.e. the lines $x=(2 n+1) \frac{\pi}{2}$; where n is an integer.
Next, we construct the following table that provides points on the graph of the tangent function:

x	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
$\tan x$	$-\sqrt{3}$	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$

Plotting these points and connecting them with a smooth curve we obtain one period of the graph of $y=\tan x$

Period: π
Domain: $x \neq \frac{\pi}{2}+n \pi$
Range: $(-\infty, \infty)$
Vertical Asymptotes: $x=\frac{\pi}{2}+n \pi$

We obtain the complete graph of $y=\tan x$ by repeating the one cycle over intervals of lengths π.

Example 1: What are the x-intercepts of $y=\tan x$?
The x-intercepts of $y=\tan x$ are the zeros of the sine function. That is, the numbers $x=n \pi$ where n is any integer.

Example 2: Sketch the graph of $y=\tan \frac{x}{2}$.
Asymptotes:
$\frac{x}{2}=-\frac{\pi}{2} \Rightarrow x=-\pi$
$\frac{x}{2}=\frac{\pi}{2} \Rightarrow x=\pi$
Therefore two consecutive asymptotes occur at $x=-\pi \& x=\pi$.
Period: $\frac{\pi}{b}=\frac{\pi}{\frac{1}{2}}=2 \pi$
Interval: $\frac{\text { Period }}{4}=\frac{2 \pi}{4}=\frac{\pi}{2}$
Therefore the asymptotes are: $x= \pm \pi+2 \pi$

The functions $y=a \tan (b x)$ and $y=a \cot (b x) ; \mathrm{b}>0$

1) The graphs of the tangent function and the cotangent function have no maximum or minimum, we conclude that these functions have no amplitude.
The parameter $|a|$ indicates a vertical stretching of the basic tangent or cotangent function if $a>1$; and a vertical compression if $0<a<1$:
If $a<0$ then reflection about the x-axis is required.
2) $y=\tan x$ (respectively $y=\cot x$) completes one cycle on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ (respectively, on $(0, \pi)$), the function $y=a \tan (b x)$ (respectively, $y=a \cot (b x))$ completes one cycle on the interval $\left(-\frac{\pi}{2 b}, \frac{\pi}{2 b}\right)$ (respectively, on the interval $\left(0, \frac{\pi}{b}\right)$.Thus, these functions are periodic of period $\frac{\pi}{b}$

Rule: Guidelines for sketching graphs of tangent and cotangent functions
To graph $y=a \tan (b x-c)+d$ and $y=a \cot (b x-c)+d$; with $\mathrm{b}>0$; follow these steps:

Step 1: Find the period $=\frac{\pi}{b}$
Step 2: Find and Graph the asymptotes:

- $x=-\frac{\pi}{2 b}$ and $x=\frac{\pi}{2 b}$, for the tangent function.
- $x=0$ and $x=\frac{\pi}{b}$ for the cotangent function.

For: $y=a \tan (b x-c)+d$ the asymptotes are: $b x-c=-\frac{\pi}{b}$ or $b x-c=\frac{\pi}{b}$
For: $y=a \cot (b x-c)+d$ the asymptotes are: $b x-c=0$ or $b x-c=\pi$
Step 3: Divide the interval into four equal parts by means of the points:

- $-\frac{\pi}{4 b}, 0, \frac{\pi}{4 b}$ (for the tangent function).
- $\frac{\pi}{4 b}, 0, \frac{3 \pi}{4 b}$ (for the cotangent function).

Step 4: Evaluate the function for each of the three x-values resulting from step 3.
Step 5: Plot the points found in step 4, and join them with a smooth curve.
Step 6: Draw additional cycles of the graph, to the right and to the left, as needed.

