Name:

Graphs of Sine and Cosine Functions

Exercise 1: The function given by $p=100-20 \cos \frac{5 \pi t}{3}$ approximates the blood pressure p (in millimeters) of mercury at time t (in seconds) for a person at rest.

1) Find the period of the function.
2) Find the number of heartbeats per minute.

Exercise 2: After exercising for a few minutes, a person has a respiratory cycle for which the velocity of air flow is approximated by $v=1.75 \sin \frac{\pi t}{2}$, where t is the time (in seconds). (Inhalation occurs when $v>0$, and exhalation occurs when $v<0$.)

1) Find the time for one full respiratory cycle
2) Find the number of cycles per minute
3) Sketch the graph of the velocity function

Exercise 3: The daily consumption C (in gallons) of diesel fuel on a farm is modeled by

$$
c=30.3+21.6 \sin \left(\frac{2 \pi t}{365}+10.9\right)
$$

Where t is the time (in days), with $t=1$ corresponding to January 1.

1) What is the period of the model? Is it what you expected? Explain
2) What is the average daily fuel consumption? Which term of the model did you use? Explain
3) Graph the model. Use the graph to approximate the time of the year when consumption exceeds 40 gallons per day

Exercise 4: A Ferris wheel is built such that the height h (in feet) above ground of a seat on the wheel at time t (in seconds) can be modeled by

$$
h(t)=53+50 \sin \left(\frac{\pi}{10} t-\frac{\pi}{2}\right)
$$

1) Find the period of the model. What does the period tell you about the ride?
2) Find the amplitude of the model. What does the amplitude tell you about the ride?
3) Graph one cycle of the model.
