Graph of Secant and Cosecant Functions

Graph of y=sec(x)

Recall that the domain of the secant function consists of all numbers $x \neq (2n+1)\frac{\pi}{2}$; where n is any

integer. So the graph has vertical asymptotes at $x = (2n+1)\frac{\pi}{2}$

The range consists of the interval $(-\infty,1] \cup [1,\infty)$. Also, the secant function is periodic of period 2π : Thus, we will sketch the graph on an interval of length 2π and then complete the whole graph by repetition.

Note that the value of sec x at a given number x equals the reciprocal of the corresponding value of $\cos x$: Thus, to sketch the graph of $y = \sec x$; we first sketch the graph of $y = \cos x$: On the same coordinate system, we plot, for each value of x, a point with height equal to the reciprocal of $\cos x$: The accompanying table gives some points to plot.

x	$-\frac{\pi}{2}$	$-\frac{\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π	$\frac{5\pi}{4}$	$\frac{3\pi}{2}$
sec x	undefined	1.414	1	1.414	undefined	-1.414	-1	-1.414	undefined

Plotting these points and connecting them with a smooth curve we obtain

the graph of y = sec x on the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \frac{3\pi}{2}\right)$

The graph of y = sec x has vertical asymptotes at $x = \frac{\pi}{2}$ and $x = \frac{3\pi}{2}$. It has minima (low points) at (0, 1) and (2 π , 1). It has a maximum (high point) at (π , -1).

Example 1: What are the x-intercepts of y = sec x?

There are no x-intercepts since either $\sec x \ge 1 \& \sec x \le -1$

Graph of $y = \csc x$

The graph of $y = \csc x$ may be graphed in a manner similar to sec x. Note that the vertical asymptotes occur at $x = n\pi$; where n is an integer since the domain consists of all real numbers different from $n\pi$:

Finally, note that in comparing the graphs of secant and cosecant functions with those of the sine and the cosine functions, the "hills" and "valleys" are interchanged. For example, a hill on the cosine curve corresponds to a valley on the secant curve and a valley corresponds to a hill.

Guidelines for Sketching Graphs of $y = a \sec(bx)$ and $y = a \csc(bx)$

To graph $y = a \sec(bx)$ or $y = a \csc(bx)$; with b > 0; follow these steps.

- 1. Find the period, $\frac{2\pi}{h}$
- 2. Graph the asymptotes:

 $x = -\frac{\pi}{2b}$, $x = \frac{\pi}{2b}$ and $x = \frac{3\pi}{2b}$, for the secant function $x = -\frac{\pi}{b}$, x = 0 and $x = \frac{\pi}{b}$ for the cosecant function

3. Divide the interval into four equal parts by means of the asymptotes and of the points:

- 0, $\frac{\pi}{b}$ (For the secant function) $-\frac{\pi}{2b}$, $\frac{\pi}{2b}$ (For the cosecant function)
- 4. Evaluate the function for each of the two x-values resulting from step
- 5. One of the points is the lowest of the "valley" and the other is the highest of the "hill."
- 6. Plot the points found in step 4, and join them with a smooth curve.
- 7. Draw additional cycles of the graph, to the right and to the left, as needed.

Mathelpers.com