Name:

Graph of Secant and Cosecant Functions

1) Sketch the graphs of the following:
2) $y=3 \sec (-x+2 \pi)$
3) $y=2 \sec \left(x-\frac{3 \pi}{4}\right)-1$
4) $y=2 \csc 4 x$
5) $y=2 \csc \left(x-\frac{\pi}{4}\right)+3$
6) For each of the following graphs,
(a) Give an equation of the form $f(x)=A \sec (B x+C)+D$ which could be used to represent the graph.
(b) Give an equation of the form $f(x)=A \csc (B x+C)+D$ which could be used to represent the graph.
7)

2)

3)

4)

3) The left-hand column contains equations that represent transformations of $f(x)=\csc (x)$. Match the equations on the left with the description on the right of how to obtain the graph of $y=g(x)$ from the graph of f.

1) $y=\frac{1}{2} \csc (3 x+\pi)$
A) Reflect in the x - axis stretch horizontally by a factor of 3 then shift left π units
2) $y=\frac{1}{2} \csc [3(x+\pi)]$
B) Shrink vertically by a factor of $\frac{1}{2}$, shrink horizontally by a factor of $\frac{1}{3}$, then shift left $\frac{\pi}{3}$ units
3) $y=2 \csc (3 x)+\pi$
C) Stretch vertically by a factor of2, shrink horizontally by a factor of $\frac{1}{3}$, then shift upward π units
4) $y=2 \csc \left[\frac{1}{3}\left(x+\frac{\pi}{3}\right)\right]$
D) Stretch vertically by a factor of 2 , stretch horizontally by a factor of 3 , then shift left $\frac{\pi}{3}$ units
5) $y=-\csc \left(\frac{1}{3} x+\frac{\pi}{3}\right)$
E) Reflect in the x - axis, stretch horizontally by a factor of 3 , then shift upward π units
6) $y=-\csc \left(\frac{1}{3} x\right)+\pi$
F) Shrink vertically by a factor of $\frac{1}{2}$, shrink horizontally by a factor of $\frac{1}{3}$, then shift left π units
