Functions

Some important sets are the following:

- 1. $\Box = \{0, 1, 2, 3, \dots\}$ = the set of natural numbers.
- 2. $\Box = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$ = the set of integers.
- 3. \Box = the set of rational numbers.
- 4. \Box = the set of real numbers.
- 5. \Box = the set of complex numbers.

Definition 1: Relation: Suppose that to each element of a set A we assign some elements of another set B. For instance, A = \Box , B= \Box , and to each element $x \in \Box$ we assign all elements $y \in \Box$ such that $y^2 = x$

This operation is called a relation

Definition 2: A function or mapping f from a set A to a set B, denoted $f: A \rightarrow B$, is a correspondence in which to each element x of A corresponds exactly one element y = f(x) of B.

Sometimes we represent the function with diagram like this:

 $f: A \to B \qquad A \to B$ $x \mapsto y \qquad x \mapsto y$

For instance, the following represents the function from Z to Z defined by f(x) = 2x + 1: $f:\Box \rightarrow \Box$

 $x \mapsto 2x + 1$

The element y = f(x) is called the image of x, and x is a pre-image of y. For instance, if f(x) = 2x + 1 then $f(7) = 2 \cdot 7 + 1 = 15$. The set A is the domain of f, and B is its co-domain. The subset f(A) of B consisting of all images of elements of A is called the range of f. For instance, the range of f(x) = 2x + 1 is the set of all integers of the form 2x + 1 for some integer x, i.e., all odd numbers.

Mathelpers

Two useful functions from \Box to \Box are the following:

Definition 3: The floor function: $\lfloor x \rfloor$ = greatest integer less than or equal to x

Example 1: 2 = 2; 2.3 = 2; $\pi = 3$; -2.5 = -3

Definition 4: The ceiling function: $\lceil x \rceil$ = greatest integer less than or equal to x

Example 2: [2] = 2; [2.3] = 3; $[\pi] = 4$; [-2.5] = -2

Types of Functions

Definition 5: One – to – one or Injective: A function $f: A \to B$ is called one – to – one or injective if each element of B is the image of at most one element of A $\forall a, b \in A, f(a) = f(b) \Rightarrow a = b$

Definition 6: Onto or Surjective: A function $f: A \rightarrow B$ is called onto or Surjective if every element of B is the image of some element of A $\forall y \in B, \exists x \in A \text{ such that } y = f(x)$

Mathelpers

Definition 7: One – To – one Correspondence or Bijective: A function $f: A \rightarrow B$ is said to be a one – to – one correspondence, or Bijective, or a bijection, if it is one – to – one and onto at the same time.

Identity Function: Given a set A, the function $1_A : A \to A$ defined by $1_A(x) = x$ for every x in A is called the identity function for A.

The Vertical Line Test: A graph in the Cartesian plane is the graph of a function if and only if no vertical line intersects the graph more than once.

This graph is a function. (No vertical line intersects the graph more than once).

This graph is not a function. (The graph does not pass the vertical line test).