Functions

Some important sets are the following:

1. $\square=\{0,1,2,3, \cdots\}=$ the set of natural numbers.
2. $\square=\{\cdots,-3,-2,-1,0,1,2,3, \cdots\}=$ the set of integers.
3. $\square=$ the set of rational numbers.
4. $\square=$ the set of real numbers.
5. $\square=$ the set of complex numbers.

Definition 1: Relation: Suppose that to each element of a set A we assign some elements of another set B. For instance, $A=\square, B=\square$, and to each element $x \in \square$ we assign all elements $y \in \square$ such that $y^{2}=x$

This operation is called a relation
Definition 2: A function or mapping f from a set A to a set B , denoted $f: A \rightarrow B$, is a correspondence in which to each element x of A corresponds exactly one element $y=f(x)$ of B.

Sometimes we represent the function with diagram like this:

$$
\begin{aligned}
f: A & \rightarrow B & & A \rightarrow B \\
x & \mapsto y & & x \mapsto y
\end{aligned}
$$

For instance, the following represents the function from Z to Z defined by $f(x)=2 x+1$:
$f: \square \rightarrow \square$

$$
x \mapsto 2 x+1
$$

The element $y=f(x)$ is called the image of x, and x is a pre-image of y. For instance, if $f(x)=2 x+1$ then $f(7)=2 \cdot 7+1=15$. The set A is the domain of f, and B is its co-domain. The subset $f(A)$ of B consisting of all images of elements of A is called the range of f. For instance, the range of $f(x)=2 x$ +1 is the set of all integers of the form $2 x+1$ for some integer x, i.e., all odd numbers.

Two useful functions from \square to \square are the following:
Definition 3: The floor function: $\lfloor x\rfloor=$ greatest integer less than or equal to x
Example 1: $\lfloor 2\rfloor=2 ;\lfloor 2.3\rfloor=2 ;\lfloor\pi\rfloor=3 ;\lfloor-2.5\rfloor=-3$
Definition 4: The ceiling function: $\lceil x\rceil=$ greatest integer less than or equal to x
Example 2: $\lceil 2\rceil=2 ;\lceil 2.3\rceil=3 ;\lceil\pi\rceil=4 ;\lceil-2.5\rceil=-2$

Types of Functions

Definition 5: One - to - one or Injective: A function $f: A \rightarrow B$ is called one - to - one or injective if each element of B is the image of at most one element of A
$\forall a, b \in A, f(a)=f(b) \Rightarrow a=b$

Definition 6: Onto or Surjective: A function $f: A \rightarrow B$ is called onto or Surjective if every element of B is the image of some element of A
$\forall y \in B, \exists x \in A$ such that $y=f(x)$

Definition 7: One - To - one Correspondence or Bijective: A function $f: A \rightarrow B$ is said to be a one - to - one correspondence, or Bijective, or a bijection, if it is one - to - one and onto at the same time.

Identity Function: Given a set A , the function $1_{A}: A \rightarrow A$ defined by $1_{A}(x)=x$ for every x in A is called the identity function for A.

The Vertical Line Test: A graph in the Cartesian plane is the graph of a function if and only if no vertical line intersects the graph more than once.

This graph is a function. (No vertical line intersects the graph more than once).

This graph is not a function. (The graph does not pass the vertical line test).

