Factoring by Grouping

In some cases there is not a GCF for ALL the terms in a polynomial. If you have four terms with no GCF, then try factoring by grouping.

To factor a four term polynomial using grouping, follow the steps listed below:
Step 1: Group the first two terms together and then the last two terms together.
Step 2: Factor out a GCF from each separate binomial.
Step 3: Factor out the common binomial.
Let us apply the steps to factor the polynomial $x^{3}+7 x^{2}+2 x+14$
There is not a GCF for ALL the terms. So let's go ahead and factor this by grouping.
Step 1: Group the first two terms together and then the last two terms together.
$x^{3}+7 x^{2}+2 x+14$
$=\left(x^{3}+7 x^{2}\right)+(2 x+14)$
Step 2: Factor out a GCF from each separate binomial.
$\left(x^{3}+7 x^{2}\right)+(2 x+14)$
$=x^{2}(x+7)+2(x+7)$
Step 3: Factor out the common binomial.

$$
\begin{aligned}
& x^{2}(x+7)+2(x+7) \\
& =\left(x^{2}+2\right)(x+7)
\end{aligned}
$$

Note that if we multiply our answer out, we do get the original polynomial.
Example 1 : Factor:

1) $x^{3}+3 x^{2}-4 x-12$.

$$
\begin{aligned}
& x^{3}+3 x^{2}-4 x-12 \\
& =x^{2}(x+3)-4(x+3) \\
& =(x+3)\left(x^{2}-4\right) \\
& =(x+3)(x-2)(x+2)
\end{aligned}
$$

A difference of squares can have more than two terms. For example, one of the squares may be a trinomial. We can factor by a type of grouping.
2) $x^{2}+6 x+9-y^{2}$.
$x^{2}+6 x+9-y^{2}$
$=\left(x^{2}+6 x+9\right)-y^{2}$, grouping as a trinomial minus y^{2} to show a difference of squares.
$=(x+3)^{2}-y^{2}$
$=(x+3+y)(x+3-y)$

