Extrema on an Interval

Let f be defined on an open interval I containing c.

1. $f(c)$ is the minimum of f on I if $f(c) \leq f(x)$ for all x in I.
2. $f(c)$ is the maximum of f on I if $f(c) \geq f(x)$ for all x in I.

The minimum and maximum of a function on an interval are the extreme values, or extrema (the singular form of extrema is extremum), of the function on the interval. The minimum and maximum of a function on an interval are also called the absolute minimum and absolute maximum on the interval.

- A function does not need to have a maximum or minimum
- Extrema that occur at endpoints of an interval are called endpoint extrema

Theorem 1: THE EXTREME VALUE THEOREM: If f is continuous on a closed interval $[a, b]$, then
f has both a minimum and a maximum on the interval.

RELATIVE EXTREMA AND CRITICAL NUMBERS

Definition 1:

1) If there is an open interval containing c on which $f(c)$ is a maximum, then $f(c)$ is called a relative maximum of f, or you can say that f has a relative maximum at $(c, f(c))$.
2) If there is an open interval containing c on which $f(c)$ is a minimum, then $f(c)$ is called a relative minimum of f, or you can say that f has a relative minimum at $(c, f(c))$.

Example 1: Find the value of the derivative (if it exists) at each indicated extremum.

1) $f(x)=\cos \frac{\pi x}{2} ;(2,-1)$

$$
\begin{aligned}
f^{\prime}(x) & =-\frac{\pi}{2} \sin \frac{\pi x}{2} \\
f^{\prime}(2) & =-\frac{\pi}{2} \sin \frac{\pi(\not 2)}{\not 2} \\
& =-\frac{\pi}{2} \sin \pi \\
& =-\frac{\pi}{2} \cdot 0 \\
& =0
\end{aligned}
$$

Mathelpers

CRITICAL NUMBER

Definition 2: Let f be defined at c. If $f^{\prime}(c)=0$, or if f is not differentiable at c, then c is a critical number of f.

Theorem 2: RELATIVE EXTREMA OCCUR ONLY AT CRITICAL NUMBERS

If f has a relative maximum or minimum at $x=c$, then c is a critical number of f.
GUIDELINES FOR FINDING EXTREMA ON A CLOSED INTERVAL
To find the extrema of a continuous function f on a closed interval $[a, b]$, use the following steps.

1. Find the critical numbers of f in (a, b).
2. Evaluate f at each critical number in (a, b).
3. Evaluate f at each endpoint of $[a, b]$.
4. The least of these numbers is the minimum. The greatest is the maximum.
