Name: ______

Definite Integrals

Exercise 1: Use the fundamental theorems of calculus to calculate each of the definite integrals given.

1)
$$\int_{1}^{2} (x+1)^{2} dx$$

2)
$$\int_{1}^{8} \frac{t-1}{\sqrt[3]{t^2}} dt$$

3)
$$\int_{\pi/3}^{\pi/2} \csc\theta \cot\theta \, d\theta$$

$$4) \qquad \int_0^{x^2+1} t^2 \mathrm{d}t$$

$$5) \qquad \int_0^x x f(t) dt$$

$$6) \qquad \int_{x}^{x^2} f(t) dt$$

7)
$$\int_0^1 \sqrt[4]{x^5} + \sqrt[5]{x^4} dx$$

8)
$$\int_0^{\frac{\pi}{4}} \sin 4x dx$$

9)
$$\int_{-1}^{3} (x^2 + x + 1) dx$$

$$10) \quad \int_{4}^{9} \sqrt{x} dx$$

11)
$$\int_{-2\pi}^{2\pi} (\sin^2(x) + \cos^2(x)) dx$$

12)
$$\int_{0}^{1} \frac{1}{4+4x^{2}} dx$$

$$13) \quad \int_0^{\frac{\pi}{3}} \sin x \cos^2 x dx$$

14)
$$\int_0^a x \sqrt{a^2 - x^2} dx$$

15)
$$\int_{1}^{2} x^{2} \ln \left(x^{3} + 2 \right) dx$$

16)
$$\int_{-1}^{-2} \frac{dx}{\sqrt{x^2 + 2x + 2}}$$

17)
$$\int_0^{13} \frac{dx}{\sqrt[3]{(1+2x)^2}}$$

18)
$$\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}} \tan \frac{1}{2} x dx$$

19)
$$\int_{-1}^{1} (2+x)^4 dx$$

$$20) \quad \int_0^6 (t^2 + 3t) dt$$

21)
$$\int_{-1}^{3} (2t^3 + 7) dt$$

22)
$$\int_0^5 4 + e^t dt$$

Exercise 2: Use the fundamental theorems of calculus to find an antiderivative F of the given function f having the specified initial value.

1)
$$f(x) = 2^{-x^2}$$
; $F(1) = 0$

2)
$$f(x) = \cos^2(x)$$
; $F(-\pi) = 0$

3)
$$f(x) = \frac{1}{x}$$
; $F(\sqrt{17}) = 0$

Exercise 3: A flue epidemic is spreading at a rate $\frac{dn}{dt} = 180t - 6t^2$ where n is the number of people

who are sick with flue on any particular day t after the outbreak started. Determine the number of people who are sick at any day t assuming that no one had the flu at the beginning. How many people have the flu the 10th day after the outbreak begins?