Curve Sketching

First Derivative

Let f be continuous on an interval I and differentiable on the interior of I.
If $f^{\prime}(x)>0$ for all $x \in I$, then f is increasing on I.
If $f^{\prime}(x)<0$ for all $x \in I$, then f is decreasing on I.
Example 1: Determine the intervals where the function f is increasing or decreasing

The function $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+3$ has first derivative
$f^{\prime}(x)=12 x^{3}-12 x^{2}-24 x$
$f^{\prime}(x)=12 x\left(x^{2}-x-2\right)$
$f^{\prime}(x)=12 x(x+1)(x-2)$

Relative Maxima and Minima

Relative extrema of f occur at critical points of f, values x_{0} for which either $f^{\prime}\left(x_{0}\right)=0$ or $f^{\prime}\left(x_{0}\right)$ is undefined.

First Derivative Test

Suppose f is continuous at a critical point x_{0}.

1) If $f^{\prime}(x)>0$ on an open interval extending left from x_{0} and $f^{\prime}(x)<0$ on an open interval extending right from x_{0}, then f has a relative maximum at x_{0}.
2) If $f^{\prime}(x)<0$ on an open interval extending left from x_{0} and $f^{\prime}(x)>0$ on an open interval extending right from x_{0}, then f has a relative
 minimum at x_{0}.
3) If $f^{\prime}(x)$ has the same sign on both an open interval extending left from x_{0} and an open interval extending right from x_{0}, then f does not have a relative extremum at x_{0}.

In summary, relative extrema occur where $f^{\prime}(x)$ changes sign.

Concavity and the Second Derivative Test

The Second Derivative Test provides a means of classifying relative extreme values by using the sign of the second derivative at the critical number. To appreciate this test, it is first necessary to understand the concept of concavity.

The graph of a function f is concave upward at the point ($c, f(c)$) if $f^{\prime}(c)$ exists and if for all x in some open interval containing c, the point ($x, f(x)$) on the graph of f lies above the corresponding point on the graph of the tangent line to f at c. This is expressed by the inequality $f(x)>\left[f(c)+f^{\prime}(c)(x-c)\right]$ for all x in some open interval containing c. Imagine holding a ruler along the tangent line through the point ($c, f(c)$): if the ruler supports the graph of f near ($c, f(c)$), then the graph of the function is concave upward.

The graph of a function f is concave downward at the point ($c, f(c)) \$ ">$ if $f^{\prime}(c)$ exists and if for all x in some open interval containing c, the point $(x, f(x)$) on the graph of f lies below the corresponding point on the graph of the tangent line to f at c. This is expressed by the inequality $f(x)<\left[f(c)+f^{\prime}(c)(x-c)\right]$ for all x in some open interval containing c. In this situation the graph of f supports the ruler. This is pictured below:

Concavity and the Second Derivative

The important result that relates the concavity of the graph of a function to its derivatives is the following one:

Theorem 1: Concavity Theorem: If the function f is twice differentiable at $\mathrm{x}=\mathrm{c}$, then the graph of f is concave upward at $(c, f(c))$ if $f^{\prime \prime}(c)>0$ and concave downward if $f^{\prime \prime}(c)<0$

Inflection Points

Notice in the example above, that the concavity of the graph of f changes sign at $x=1$. Points on the graph of f where the concavity changes from up-to-down or down-to-up are called inflection points of the graph. The following result connects the concept of inflection point to the derivatives properties of the function:

Mathelpers

Theorem 2: Inflection point Theorem: If $f^{\prime}(c)$ exists and $f^{\prime \prime}(c)$ changes sign at $\mathrm{x}=\mathrm{c}$, then the point $(c, f(c))$ is an inflection point of the graph of f . If $f^{\prime \prime}(c)$ exists at the inflection point, then $f^{\prime \prime}(c)=0$

If we return to our example, where $f(x)=x^{3}-3 x^{2}+x-2$, the INFLECTION POINT THEOREM verifies that the graph of f has an inflection point at $x=1$, since $f^{\prime \prime}(1)=0$.

The Second derivative Test: Suppose that c is a critical point at which $f^{\prime}(c)=0$, that $f^{\prime}(x)$ exists in a neighborhood of c , and that $f^{\prime \prime}(c)$ exists. Then f has a relative maximum value at c if $f^{\prime \prime}(c)<0$ and a relative minimum value at c if $f^{\prime \prime}(c)>0$. If $f^{\prime \prime}(c)=0$, then the test is not informative.

To graph a polynomial function follow the steps listed below:

Step1: State the domain.
Step2: Find $f^{\prime}(x)$
Step3: Construct a table of signs for $f^{\prime}(x)$ and interpret the results.
(Determine all relative and absolute maximum and minimum values and the intervals on which the function is increasing (\uparrow), decreasing $(\downarrow))$

Step4: Find $f^{\prime \prime}(x)$
Step5: Construct a table of signs for $f^{\prime \prime}(x)$ and interpret the results.
(Determine all inflection points and the intervals on which the function is concave up (U), and concave down (\cap))

Step6: Determine x - and y-intercepts

