Name:

\qquad

Curve Sketching

Exercise 1: By performing a sign analysis on $f^{\prime}(x)$, determine the open interval(s) in which each of the following functions is increasing or decreasing. Check your answers by examining the graph provided.

1) $f(x)=x^{2}-2 x-3$

2) $f(x)=\frac{1}{3} x^{3}+x^{2}-8 x-2$

3) $f(x)=x \sqrt{6-x}$

4) $f(x)=\frac{1}{x}$

5) $f(x)=2 x^{2}-x^{4}$

Exercise 2: Find the intervals in which the function is increasing or decreasing. Find the coordinates of any relative extrema. Use the first derivative test. Verify with a graphing calculator.

1) $f(x)=14-5 x-x^{2}$
2) $f(x)=(x+2)^{3}$
3) $f(x)=x^{4}-8 x$
4) $f(x)=x-\frac{1}{x}$
5) $f(x)=\frac{x+2}{(x-1)^{2}}$
6) $f(x)=\frac{x^{2}}{x^{2}-4}$
7) $f(x)=(x-1) \sqrt{x+2}$
8) $f(x)=\frac{x}{\sqrt{x-2}}$
9) $f(x)=(x-3)^{2 / 3}$
10) $f(x)=3 \sqrt[3]{x}-x$
11)

$$
f(x)=\left(x^{2}-9\right)^{2 / 3}
$$

Exercise 3: Let $f(x)=x^{3}-x$. Find:

1) Critical numbers of f.
2) Intervals on which f is increasing or decreasing.
3) Find any extrema

Exercise 4: Let $f(x)=\frac{2 x-1}{x-3}$. Find:

1) Critical numbers of f.
2) Find the intervals on which f is increasing or decreasing.
3) Find any extrema

Exercise 5: Let $f(x)=\sqrt[3]{x-2}$. Find:

1) Critical numbers of f.
2) Intervals on which f is increasing or decreasing
3) Find any extrema
