Continuity

In Mathematics the term continuous has much the same meaning as it has in everyday usage. Informally, to say that a function f is continuous at $x=c$ means that there is no interruption in the graph of f at c. That is its graph is unbroken at c and there are no holes, jumps or gaps. The diagrams below identify three values of x at which the graph of f is not continuous. At all other points in the interval (a, b), the graph of f is uninterrupted and continuous.

Discontinuous because it has a hole at $\mathrm{x}=2$

Discontinuous because there is a jump at $\mathrm{x}=3$

Discontinuous at $\mathrm{x}=2$ because there is a gap

Definition 1: Continuity at a point: Let f be a function that is defined for all x in some open interval containing a. A function $f(x)$ is continuous at $x=a$ if the following three conditions are met:

1) $f(a)$ is defined
(A function value exists at $x=a$.)
2) $\lim _{x \rightarrow a} f(x)$ exists
(A limit value exists as you approach $x=a$.)
3) $\lim _{x \rightarrow a} f(x)=f(a) \quad$ (The function value equals the limit value at $x=a$.)

Example 1: Show that the function $f(x)=\frac{\sqrt{x^{2}-x+1}}{x-5}$ is continuous at $x=-3$.
$f(-3)=\frac{\sqrt{(-3)^{2}-(-3)=1}}{(-3)-5}=-\frac{\sqrt{13}}{8}$
$\Rightarrow f(c)$ is defined.
$\lim _{x \rightarrow-3} f(x)=\lim _{x \rightarrow-3} \frac{\sqrt{x^{2}-x+1}}{x-5}$
$=\frac{\lim _{x \rightarrow-3} \sqrt{x^{2}-x+1}}{\lim _{x \rightarrow-3}(x-5)}$
limit of a quotient
$=\frac{\sqrt{\lim _{x \rightarrow-3}\left(x^{2}-x+1\right)}}{\lim _{x \rightarrow-3}(x-5)}$
$=\frac{\sqrt{(-3)^{2}-(-3)+1}}{(-3)-5}$
$=-\frac{\sqrt{13}}{8}$
$\Rightarrow \lim _{x \rightarrow c} f(x)$ exists.
Therefore, $\lim _{x \rightarrow-3} f(x)=f(-3)$ and f is continuous at $x=-3$.
Consider an open interval I that contains a real number c. If a function f is defined on I (except possibly at c), and f is not continuous at c , then f is said to have a discontinuity at
c. Discontinuity fall into two categories: removable and nonremovable. A discontinuity at c is removable if f can be made continuous by appropriately defining (or reducing) f(c).

Removable: hole in graph at $\mathrm{x}=\mathrm{c}$
Hole: factor and reduce, common factor is the hole
Nonremovable: jump or break in graph
Nonremovable (Vertical Asymptote): set denominator of reduced quotient equal to zero

Continuity of Special Functions

\Rightarrow Every polynomial function is continuous at every real number.
\Rightarrow Every rational function is continuous at every real number in its domain.
\Rightarrow Every exponential function is continuous at every real number.
\Rightarrow Every logarithmic function is continuous at every positive real number.
$\Rightarrow f(x)=\sin x$ and $g(x)=\cos x$ are continuous at every real number.
$\Rightarrow h(x)=\tan x$ is continuous at every real number in its domain.

Continuity from the Left and Right

A function f is continuous from the right at $x=a$ provided that $\lim _{x \rightarrow a^{+}} f(x)=f(a)$.
$>$ A function f is continuous from the right at $x=b$ provided that $\lim _{x \rightarrow b^{-}} f(x)=f(b)$.

Continuity on an Interval

1) A function f is said to be continuous on an open interval (a, b) provided that fis continuous at every value in the interval.
2) A function f is said to be continuous on a closed interval $[\mathrm{a}, \mathrm{b}]$ provided that f is continuous from the right at $\mathbf{x}=\mathbf{a}\left(\lim _{x \rightarrow a^{+}} f(x)=f(a)\right)$, continuous from the left at $\mathbf{x}=\mathbf{b}\left(\lim _{x \rightarrow b^{-}} f(x)=f(b)\right)$, and continuous at every value in the open interval (a, b).

Properties of Continuous Functions

If the functions f and g are continuous at $x=c$, then each of the following functions are also continuous at $x=c$:
\checkmark Scalar Product: $b f$
\checkmark Sum and Difference: $f \pm g$
\checkmark Product: $f g$
\checkmark Quotient: $\frac{f}{g}$, if $g(c) \neq 0$

Properties of Composite Functions

If g is continuous at c and f is continuous at $g(c)$, then the composite function given by $(f \circ g)(x)=f(g(x))$ is continuous at c .

Theorem 1: The Intermediate Value Theorem

If the function f is continuous on the closed interval $[a, b]$ and k is any number between $f(a)$ and $f(b)$, then there exists at least one number c between a and b such that $f(c)=k$.

