Complementary Events

Definition 1: Complementary events are a subgroup of mutually exclusive events. Mutually exclusive events (including complementary events) can't both happen; but when two events are complementary then one or the other must happen.

For example, the events "you get an A in this course" and "you get a B in this course" are mutually exclusive but not complementary; the events "you get a C or better" and "you get a D or worse" are mutually exclusive and complementary.
If two events are complementary, their probabilities must add to 1 (certainty) and each of them is equivalent to not the other.

Rule 1: The probability of the complement $\mathrm{A}, P^{C}(A)$, is the probability that the event A would not occur is $P^{C}(A)=P($ not $A)=1-P(A)$

Example 1: Either it will rain tomorrow, or it will not. Therefore if the weather forecast is for 40% chance (probability) of rain, the probability that it won't rain is $100 \%-40 \%=60 \%$.

Definition 1: Complementary events are a subgroup of mutually exclusive events. Mutually exclusive events (including complementary events) can't both happen; but when two events are complementary then one or the other must happen.

For example, the events "you get an A in this course" and "you get a B in this course" are mutually exclusive but not complementary; the events "you get a C or better" and "you get a D or worse" are mutually exclusive and complementary.
If two events are complementary, their probabilities must add to 1 (certainty) and each of them is equivalent to not the other.

Rule 1: The probability of the complement $\mathrm{A}, P^{C}(A)$, is the probability that the event A would not occur is $P^{C}(A)=P($ not $A)=1-P(A)$

