Mathelpers

Basic Integration Techniques

To actually find an antiderivative we need to use the following rule.

Power Rule for Antiderivatives

If $n \neq -1$ then the most general antiderivative of x^n is $\frac{1}{n+1}x^{n+1} + C$, where C is an arbitrary constant.

 $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ provided $n \neq -1$ (to avoid division by zero)

Example 1: Find the most general antiderivative of $f'(x) = x^2$.

Using the power rule for antiderivatives we obtain: $f(x) = \frac{1}{2+1}x^{2+1} = \frac{1}{3}x^3 + C$

Rule 1:Let *k* and C be constants, then:

- 1) $\int k \, dx = kx + C$
- 2) $\int k f(x) dx = k \int f(x) dx$
- 3) $\int [f(x) \pm g(x)] dx = \int f(x) dx \pm \int g(x) dx$