Name:

\qquad

Basic Differentiation Rules

1) Find the derivative of each of the following functions.
(1) $f(x)=x^{4}+2 x^{3}-x^{2}+3 x-6$
(2) $f(x)=\frac{x^{2}-4}{x}$
(3) $f(x)=\sqrt{x}-6 \sqrt[3]{x}$
(4) $f(x)=\frac{x-1}{2 x-3}$
(5) $f(x)=\frac{x-3}{x^{2}+1}$
2) Write each of the following powers as a product. Then use the product rule to find $f^{\prime}(x)$.
1. $f(x)=\left(2 x^{3}+x\right)^{2}$
2. $f(x)=(2 x-3)^{3}$
3) Find the slope of the tangent line to the given curve at the given point. Use the product rule to find the derivative.
1. $f(x)=\left(x^{3}-2\right)\left(x^{2}+2 x-7\right), x=0$
2. $f(x)=(x-2)(2 x+5)(3 x-4), x=1$
3. $f(x)=\left(2 x+x^{-1}\right)\left(x^{-2}-2 x^{-3}\right), x=-1$
4) Find each of the following derivatives using the product rule. Leave your answer in a non simplified form (stop after the first line of differentiation).
1. $y=\left(x^{2}-2 x-5\right)\left(x^{2}+2 x+7\right)$
2. $y=\left(2 x^{2}+5 x\right)\left(x^{2}-7 x-8\right)$
3. $y=x(3 x+5)(2 x-1)$
4. $y=\left(2 x^{3}\right)\left(x^{2}-7 x\right)\left(3 x^{2}+4 x-8\right)$
5) Marie's annual salary over the past 25 years of her working life can be modeled by the function $y=2(x+100)\left(x^{2}+50\right)$, where y is her salary in dollars in her $x^{\text {th }}$ year of work.
(1) How much was she earning when she started work, that is when $x=0$?
(2) How much was she earning in her $20^{\text {th }}$ year?
(3) What would $\frac{d y}{d x}$ represent?
(4) Find $\frac{d y}{d x}$ as a function of x.
(5) Find $\left.\frac{d y}{d x}\right|_{x=10}$ and $\left.\frac{d y}{d x}\right|_{x=20}$. Interpret the results.
(6) Is $\frac{d y}{d x}$ increasing or decreasing?
6) The reaction of the body to a dose of medicine can often be represented by an equation of the form $R=M^{2}\left(\frac{C}{2}-\frac{M}{3}\right)$, where C is a positive constant and M is the amount of medicine absorbed in the blood. If the reaction is a change in blood pressure, R is measured in millimeters of mercury. If the reaction is a change in temperature, R is measured in degrees, and so on.

Find $\frac{d R}{d M}$. This derivative, as a function of M, is called the sensitivity of the body to the medicine.
7) Let $f(x)=x^{2}+1$. Find $f^{\prime}(2)$
8) Find the derivative of each function

1) $y=f(x)=3 x^{4}+2 x^{3}$
2) $s=f(t)=2 t^{11}+\frac{1}{2} t^{3}$
3) $y=f(x)=5 x+4 x^{1 / 2}$
4) $y=f(x)=3 x^{4}-\frac{3}{x^{3}}+2 x-3$
5) Differentiate with respect to whatever letter the function is written in on the right-hand side.
6) $y=7 x^{2}+3 x^{4}$
7) $v=5 t-1$
8) $y=3-\frac{2}{x^{3}}$
9) $v=2 t^{1 / 2}+3 t-\frac{1}{2}$
