Mathelpers

Basic Differentiation Rules

The Constant Rule

Let
$$f(x) = c$$
, by the limit definition of the derivative,
 $\frac{d}{dx}[c] = f'(x)$
 $= \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{\Delta x}$
 $= \lim_{\Delta x \to 0} \frac{c - c}{\Delta x}$
 $= \lim_{\Delta x \to 0} 0$
 $= 0$

Theorem 1: The derivative of a constant function f(x) = c is 0. That is, if c is a real number, then $\frac{d}{dx}[c] = 0$

The Power Rule: If n is a positive integer greater than 1, then the binomial expansion produces f(x,y,z) = f(x,y)

$$\frac{d}{dx} \left[x^{n} \right] = \lim_{\Delta x \to 0} \frac{f \left(x + \Delta x \right) - f \left(x \right)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\left(x + \Delta x \right)^{n} - x^{n}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{x^{n} + nx^{n-1} \left(\Delta x \right) + \frac{n(n-1)x^{n-2}}{2} \left(\Delta x \right)^{2} + \dots + \left(\Delta x \right)^{n} - x^{n}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \left[nx^{n-1} + \frac{n(n-1)x^{n-2}}{2} \left(\Delta x \right)^{2} + \dots + \left(\Delta x \right)^{n-1} \right]$$

$$= nx^{n-1} + 0 + \dots + 0$$

$$= nx^{n-1}$$

Theorem 2: If n is a rational number, then the function $f(x) = x^n$ is differentiable and $\frac{d}{dx} [x^n] = nx^{n-1}$

In particular, if n=1 then f(x) = x, using the power rule its derivative is $f'(x) = x^{1-1} = x^0 = 1$

Example 1: Find the derivative

1)
$$\frac{d}{dx}x^3 = 3x^2$$

2) $\frac{d}{dx}x^{-3} = -3x^{-4}$

Basic Differentiation Rules

Suppose *c* and *n* are constants, and f *and* g are differentiable functions.

(1)
$$f(x) = cg(x)$$

 $f'(x) = \lim_{b \to x} \frac{f(b) - f(x)}{b - x} = \lim_{b \to x} \frac{cg(b) - cg(x)}{b - x} = c\lim_{b \to x} \frac{g(b) - g(x)}{b - x} = cg'(x)$
 $f(x) = cg(x) \Rightarrow f'(x) = cg'(x)$

(2) $f(x) = g(x) \pm k(x)$ $f'(x) = \lim_{b \to x} \frac{f(b) - f(x)}{b - x} = \lim_{b \to x} \frac{[g(b) \pm k(b)] - [g(x) \pm k(x)]}{b - x} =$ $\lim_{b \to x} \frac{g(b) - g(x)}{b - x} \pm \lim_{b \to x} \frac{k(b) - k(x)}{b - x} = g'(x) \pm k'(x)$

 $f(x) = g(x) \pm k(x) \Longrightarrow f'(x) = g'(x) \pm k'(x)$

$$(3) \quad f(x) = g(x)k(x)$$

$$f'(x) = \lim_{b \to x} \frac{f(b) - f(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) + g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) + g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(x)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b)k(x) - g(b)k(x)}{b - x} = \lim_{b \to x} \frac{g(b)k(b)k(x)$$

g(x)k'(x) + k(x)g'(x) (Product Rule)

 $f(x) = g(x)k(x) \Longrightarrow f'(x) = g(x)k'(x) + k(x)g'(x)$

(4)
$$f(x) = \frac{g(x)}{k(x)}$$

 $f(x) = \frac{g(x)}{k(x)} \Rightarrow f(x)k(x) = g(x) \Rightarrow g'(x) = f(x)k'(x) + k(x)f'(x)$
 $\Rightarrow f'(x) = \frac{g'(x) - f(x)k'(x)}{k(x)} = \frac{g'(x) - \left[\frac{g(x)}{k(x)}\right]k'(x)}{k(x)} = \frac{k(x)g'(x) - g(x)k'(x)}{[k(x)]^2}$

This derivative rule is called the Quotient Rule.

$$f(x) = \frac{g(x)}{k(x)} \Longrightarrow f'(x) = \frac{k(x)g'(x) - g(x)k'(x)}{\left[k(x)\right]^2}$$

Mathelpers.com

Mathelpers

The table below provides a summary for the basic rules:

Function	Derivative
f(x) = c	f'(x) = 0
f(x) = x	f'(x) = 1
$f(x) = x^n$	$f'(x) = nx^{n-1}$
$f(x) = cx^n$	$f'(x) = c(nx^{n-1})$
u and v are functions	
$f(x) = u \pm v$	$f'(x) = u' \pm v'$
f(x) = uv	f'(x) = u'v + v'u
$f(x) = \frac{u}{v} \qquad v \neq 0$	$f'(x) = \frac{u'v - v'u}{v^2}$