Arithmetic Sequences and Series

An arithmetic sequence is a sequence such that each successive term is obtained from the previous term by adding or subtracting a fixed number called a difference.

The sequence $4,7,10,13,16 \ldots$ is an example of an arithmetic sequence - the pattern is that we are always adding a fixed number of three to the previous term to get to the next term.

Definition 1: An arithmetic series (or arithmetic progression) is a sequence of numbers such that each number differs from the previous number by a constant amount, called the common difference.
If a_{1} is the first term, a_{n} is the nth term, d is the common difference, n is the number of terms then:
$a_{n}=a_{1}+(n-1) d$
$d=a_{2}-a_{1}=a_{3}-a_{2}=a_{4}-a_{3}=a_{5}-a_{4}=\ldots=a_{n}-a_{n-1}$

Be careful: don't think that every sequence that has a pattern in addition is arithmetic. It is arithmetic if you are always adding the SAME number each time.

Example 1: Find the first five terms and the $15^{\text {th }}$ term of the arithmetic sequence $a_{n}=3+(n-1)\left(\frac{1}{2}\right)$
n is our term number, we plug the term number into the function to find the value of the term.
Let's see what we get for our first five terms:
$a_{n}=3+(n-1)\left(\frac{1}{2}\right)$
$n=1 \Rightarrow a_{1}=3+(1-1)\left(\frac{1}{2}\right)=3+0=3$
$n=2 \Rightarrow a_{2}=3+(2-1)\left(\frac{1}{2}\right)=3+\frac{1}{2}=3 \frac{1}{2}$
$n=3 \Rightarrow a_{3}=3+(3-1)\left(\frac{1}{2}\right)=3+1=4$
$n=4 \Rightarrow a_{4}=3+(4-1)\left(\frac{1}{2}\right)=3+\frac{3}{2}=4 \frac{1}{2}$
$n=5 \Rightarrow a_{5}=3+(5-1)\left(\frac{1}{2}\right)=3+\frac{4}{2}=5$
Now lets check out the $15^{\text {th }}$ term:
$a_{15}=3+(15-1)\left(\frac{1}{2}\right)=3+(14)\left(\frac{1}{2}\right)=3+7=10$
What was the common difference for this arithmetic sequence?
$d=a_{2}-a_{1}=3-3 \frac{1}{2}=\frac{1}{2}$

Example 2: Write a formula for the $n^{\text {th }}$ term of the arithmetic sequence $-10,-5,0,5, \ldots$.
We will use the $n^{\text {th }}$ term formula for an arithmetic sequence, $a_{n}=a_{1}+(n-1) d$, to help us with this problem.

Basically we need to find two things, the first term of the sequence a_{1} and the common difference, d.
What is a_{1}, the first term of the sequence?
The first term of this sequence is $-10 \Rightarrow a_{1}=-10$
What is d, the common difference?
$d=a_{2}-a_{1}=-10+5=-5$
Substituting the values of a_{1} and d in the formula, we obtain:

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{n}=-10+(n-1)(5) \\
& a_{n}=-10+5 n-5=-15+5 n
\end{aligned}
$$

Example 3: Calculate a_{100} for the arithmetic sequence

$$
17,22,27,32 \ldots
$$

By subtracting adjacent terms, you find that the common difference, d, equals 5. Adding (100-1) times 5 to the first term gives

$$
\begin{aligned}
a_{100}= & 17+(100-1)(5) \\
& =17+495=512
\end{aligned}
$$

Example 4: The number 68 is a term in the arithmetic sequence with $a_{1}=5$ and $d=3$. Which term is it?

In this case you know that $a_{n}=68$, and you must find the term number, n. using formula,

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& 68=5+(n-1)(3) \quad \text { substituting into the formula } \\
& 63=(n-1)(3) \\
& 21=n-1 \\
& \therefore n=22
\end{aligned}
$$

Theorem 1: If $a_{n}=a_{1}+(n-1) d$ is an arithmetic sequence then the sum of the sequence is
$S_{n}=\sum_{i=1}^{n} a_{n}=S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$

In other words, to find the sum of the first \boldsymbol{n} terms of a series you need to know the first term $\left(t_{1}\right)$, the last term (t_{n}) and the number of terms (n).

Definition 2: The Sum of the First \boldsymbol{n} Terms of Arithmetic Sequence

$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
S_{n} is the sum of the first n terms in a sequence
n is the number of terms you are adding up
a_{1} is the first term of the sequence
a_{n} is the nth term of the sequence

Example 5: Given the A.P. 8, 2, -4, -10... find $\sum_{k=1}^{18} a_{k}$.
The above symbol is telling you to find the sum of each term from term 1 , (replace k with 1 in the statement to the right of sigma to get a_{1}) to term 18 (again, replacing k with 18 to get a_{18}). In other words:
$\sum_{k=1}^{18} a_{k}$ means sum the first 18 terms
$a_{1}=8$
It is an A.P. $\Rightarrow a_{n}=a_{1}+(n-1) d$

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& a_{18}=a_{1}+(18-1) d \\
& a_{18}=(8)+17(-6) \\
& a_{18}=8-102 \\
& a_{18}=-94
\end{aligned}
$$

Now that we know the value of the first term, the last term, and n, we can use the formula to find the sum of a set number of terms of a sequence: $S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
Just fill in the information you already know and solve.
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$S_{18}=\frac{18}{2}(8+(-94))$
$S_{18}=\frac{18}{2}(-86)$
$S_{18}=\frac{-1548}{2}$
$S_{18}=-774$
Therefore, $\sum_{k=1}^{18} a_{k}=-774$.

Example 6: Add the first 29 terms of the A.P. shown here: $3,11,19, \ldots$

We know that we are looking for the sum of the first 29 terms, therefore $n=29$. Putting this into the formula we get: $S_{29}=\frac{29}{2}\left(a_{1}+a_{29}\right)$
We already know the value of n, and we know the value of a_{1} (which is 3). We just need to figure out the value of a_{29}.
$a_{n}=a_{1}+(n-1) d$
$a_{29}=a_{1}+(29-1) d$
$a_{29}=(3)+28(8)$
$a_{29}=3+224$
$a_{29}=227$
So now that we know the value of a_{29} is 227 , we can fill in the rest of the formula used to calculate the sum and solve. We get:
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$S_{29}=\frac{29}{2}(3+227)$
$S_{29}=\frac{29}{2}(230)$
$S_{29}=\frac{6670}{2}$
$S_{29}=3335$
Therefore the sum of the first 29 terms is 3335 .
Example 7: Find the sum of the arithmetic series $\sum_{n=5}^{14}(-2 n+3)$
What is the first term?
$-2 n+3=-2(5)+3=-7$

What is the last term?

$-2 n+3=-2(14)+3=-25$
How many terms are we summing up?
If you start at 5 and go all the way to 14 , there will be 10 terms.
Putting in -7 for the first term, -25 for the last term, and 10 for n, we get:
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$\sum_{n=5}^{14}(-2 n+3)=\frac{10}{2}(-7-25)=-160$

Example 8: Find S_{10} for the sequence $a_{n}=6 n-1$

The formula says we need to know n , the first term, and the $\mathrm{n}^{\text {th }}$ term.
$\mathrm{n}=10$ since we are asked to find the sum of the first 10 terms
$a_{1}=6(1)-1=6-1=5$
$a_{10}=6(10)-1=60-1=59$
Substituting these values into the equation gives
$S_{10}=\frac{10}{2}(5+59)=5(64)=320$

Example 9: Find the sum of the arithmetic series $3+6+9+\ldots+99$.

What is the first term? 3

What is the last term? 99
How many terms are we summing up?
Because of the way it is written with the 3 dots, this one is a little bit trickier. You have to do a little figuring. We can use the nth term of an arithmetic sequence and solve for n, the number of terms in the sequence:

$$
\begin{aligned}
& a_{n}=a_{1}+(n-1) d \\
& 99=3+(n-1) 3 \\
& 99=3+3 n-3 \\
& 99=3 n \\
& n=33
\end{aligned}
$$

Putting in 3 for the first term, 99 for the last term, and 33 for n, we get:
$S_{n}=\frac{n}{2}\left(a_{1}+a_{n}\right)$
$S_{n}=\frac{33}{2}(3+99)=1683$

Example 10: Find the sum of the first 21 terms of the sequence $3,7,11,15, \ldots$
The formula says we need to know n, the first term, and the $\mathrm{n}^{\text {th }}$ term.
$\mathrm{n}=21$ since we are asked to find the sum of the first 21 terms.
$\mathrm{d}=4$
$\Rightarrow S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$
$\Rightarrow S_{n}=\frac{21}{2}[2(3)+(21-1)(4)]$
$\Rightarrow S_{n}=903$

