Name:

\qquad

Arithmetic Sequences and Series

Exercise 1: Find the explicit formula for each arithmetic sequence:

1) $d=3$ and $a_{12}=58$
2) $d=2$ and $a_{7}=8$
3) $d=7$ and $a_{1}=-6$
4) $\mathrm{a}_{7}=24$ and $\mathrm{a}_{13}=50$
5) $d=4$ and $a_{2}=5$
6) $\mathrm{a}_{3}=12$ and $\mathrm{a}_{6}=34$
7) $d=8$ and $a_{1}=6$
8) $\mathrm{a}_{2}=8$ and $\mathrm{a}_{4}=20$
9) $\mathrm{a}_{1}=2$ and $\mathrm{a}_{2}=8$
10) $\mathrm{a}_{6}=0$ and $\mathrm{a}_{9}=-18$

Exercise 2: Find the indicated term for each arithmetic sequence.

1) $-1,-5,-9,-13, \ldots, a_{11}$
2) $a(r-1), a r, a(r+1), \ldots, a$,

Exercise 3: A sequence is defined by $a_{1}=4, a_{k}=a_{k-1}+2, k>1, k \in \mathrm{~N}$. Show that the sequence is arithmetic.

Exercise 4: How many terms are there in each sequence?

1) $12,9,6, \ldots . .,-30$
2) $x, x+2 y, x+4 y, \ldots \ldots . . x+18 y$

Exercise 5: Evaluate

1) $\sum_{n=1}^{6}(3 n-2)$
2) $\sum_{n=1}^{4}(8 n+3)$
3) $\sum_{n=3}^{8}(n+1)$
4) $\sum_{n=7}^{11}\left(\frac{1}{2} n-9\right)$
5) $\sum_{n=9}^{14}(2 n+13)$
6) $\sum_{n=0}^{5}(12 n-15)$
