Applications and Models

Part A: Applications involving right triangles

The three angles of a right triangle are denoted by the letters A, B, and C (where C is the right angle), and the lengths of the sides opposite to these angles by the letters a, b, and c (where c is the hypotenuse)

Example 1: Solve the right triangle ABC , given that $\mathrm{A}=35^{\circ}, \mathrm{a}=15 \mathrm{~cm}$.
$\mathrm{m} \angle \mathrm{B}=90^{\circ}$ (right angle)
To find the measure of angle C , we use the triangle sum theorem $\mathrm{m} \angle \mathrm{C}=180^{\circ}-90^{\circ}-35^{\circ}=55^{\circ}$.

We will use the sin ratio to find b
$\sin \mathrm{A}=\frac{\mathrm{opp}}{\mathrm{hyp}} \Rightarrow \sin 35^{\circ}=\frac{15}{b} \Rightarrow b=\frac{15}{\sin 35^{\circ}}=26.15 \mathrm{~cm}$

We will use the \tan ratio to find c
$\tan A=\frac{o p p}{a d j} \Rightarrow \tan 35^{\circ}=\frac{15}{c} \Rightarrow c=\frac{15}{\tan 35^{\circ}}=21.42 \mathrm{~cm}$

1) Find a

We know angle A and the hypotenuse, so the sine function can be used to determine the length of side a.

$$
\begin{aligned}
& \sin A=\frac{a}{c} \\
& \Rightarrow \sin 51^{\circ}=\frac{a}{150} \\
& \Rightarrow a=150\left(\sin 51^{\circ}\right) \\
& \therefore a \approx 116.6 \mathrm{~m}
\end{aligned}
$$

Angles of elevation and depression

In surveying, the angle of elevation is the angle from the horizontal looking up to some object:

The angle of depression is the angle from the horizontal looking down to some object:
\qquad
angle of depression

Application involving Bearings

In surveying and navigation, directions are generally given in terms of bearings. A bearing measures the acute angle that a path or line sight makes with a fixed north - south line.
There are two methods for expressing bearing.

1) Single Angle Given: When a single angle is given, it is understood that the bearing is measured in a clockwise direction from due north. In general in air navigation, bearings are measured in degrees clockwise from north.

