Mathelpers

Name:

Antiderivatives and Indefinite Integration

Exercise 1: Find the most general antiderivative of each of the following functions.
a) $g(x)=\frac{1}{x}+e^{x}$
b) $f(x)=x^{3}-5 x$
c) $g(x)=\frac{1}{x^{2}}+\sqrt{x}-\frac{1}{3} x^{-2 / 3}$
d) $h(x)=\sec x(\sec x-\tan x)$

Exercise 2: Find f if $f^{\prime}(x)=x^{3}-5 x$ and $f(0)=-1$.

Exercise 3: Find all possible functions with the given derivative:
a) $f^{\prime}(x)=4$
b) $f^{\prime}(x)=x$
c) $f^{\prime}(x)=\cos (x)$

Exercise 4: Suppose that $f^{\prime}(x)=\frac{1}{2} x$ for all x. Find $f(3)$ if $f(2)=5$.

Exercise 5: Find the function with the following derivative that passes through the following point:

$$
f^{\prime}(x)=3 x+5, \quad \mathrm{P}(1,2)
$$

Exercise 6: The acceleration of a moving object is given by $a(t)=12 t-5$, where $a(t)$ is in cm per min and t is in min . If the velocity at time $\mathrm{t}=1$ is $8 \mathrm{~cm} / \mathrm{min}$, find an equation for $v(\mathrm{t})$, the velocity as a function of time. Use the equation to find the velocity at the instant $\mathrm{t}=3$.

Exercise 7: The acceleration function of a body moving on a coordinate line is given by $a=9.8$. The initial velocity is $v(0)=-3$, and the initial position is $s(0)=0$. Find the body's position at time t.

Exercise 8: Given $v(t)=32 t-2$ and $s(0.5)=4$, find $s(t)$.

