## Name:

## Pythagorean Theorem

1) The sides of certain triangles are given below. Determine which of them are right triangles : $[A B=c, B C=a, C A=b]$
2) $\mathrm{a}=4 \mathrm{~cm}, \mathrm{~b}=5 \mathrm{~cm}, \mathrm{c}=3 \mathrm{~cm}$
3) $\mathrm{a}=1.6 \mathrm{~cm}, \mathrm{~b}=3.8 \mathrm{~cm}, \mathrm{c}=4 \mathrm{~cm}$
4) $\mathrm{a}=9 \mathrm{~cm}, \mathrm{~b}=16 \mathrm{~cm}, \mathrm{c}=18 \mathrm{~cm}$
5) $\mathrm{a}=7 \mathrm{~cm}, \mathrm{~b}=24 \mathrm{~cm}, \mathrm{c}=25 \mathrm{~cm}$
6) Given that $R S=3 \mathrm{~cm}$ and $R U=5.3 \mathrm{~cm}$. Find $R V$

7) Find the area of the given triangle

8) Find the length of diagonal of a rectangle the lengths of whose sides are 3 cm and 4 cm .
9) Find the area of the parallelogram

10) Find the length of the diagonal of a square of side 10 cm .
11) $P$ and $Q$ are points on the sides $C A$ and $C B$ respectively of $\sqcup A B C$, right angled at $C$.

Prove that $A Q^{2}+B P^{2}=A B^{2}+P Q^{2}$
8) A ladder is placed against a wall such that its top reaches up to a height of 4 m of the wall. If the foot of the ladder is 3 m away from the wall, find the length of the ladder.
9) $\angle \mathrm{PQR}$ is an isosceles right triangle with $\angle \mathrm{Q}=90^{\circ}$.

Prove that $\mathrm{PR}^{2}=2 \mathrm{PQ}^{2}$.
10) Given $\lrcorner P Q R$, with $m \angle P=90^{\circ}, P Q=20$ in., and $P R=15$ in., find the area of $\lrcorner P Q R$, the length of the hypotenuse, and the altitude to the hypotenuse.

