Name: _____

Solving Radical Equations

Exercise 1: Solve each equation. Check your solution.

1)
$$\sqrt{x} = 5$$

2)
$$\sqrt{2x} = 2$$

3)
$$3\sqrt{x} = 1$$

4)
$$2\sqrt{x-1} = 3$$

5)
$$5\sqrt{x-9} = 3$$

6)
$$4\sqrt{2x-1} = -3$$

7)
$$\sqrt{2x-3} = 4$$

8)
$$\sqrt{2x+4}-5=6$$

9)
$$\sqrt{3x+9}-3=2$$

10)
$$\sqrt{3x+1} = 2\sqrt{x-1}$$

11)
$$\sqrt{x+1} = 7$$

12)
$$6\sqrt{x+3} = 11$$

13)
$$\sqrt{3-2x}+5=11$$

14)
$$\sqrt{x-4} = 3\sqrt{2x}$$

15)
$$7\sqrt{x+3} = 5\sqrt{2x-6}$$

$$16) \sqrt{3 - 2x} = 5\sqrt{7 + 2x}$$

Exercise 2: The speed of sound S, in meters per second, near Earth's surface can be determined using the formula $S = 20\sqrt{t + 273}$, where t is the surface temperature in degrees Celsius. Suppose a racing team has designed a car that can travel 340 meters per second, in hopes of breaking the sound barrier. At what temperature will the speed of sound be 340 meters per second?

Mathelpers

Exercise 3: The formula $t = \sqrt{\frac{2s}{g}}$ can be used to determine the time t, in seconds, it takes an object

initially at rest to fall s meters. In this formula, g is the acceleration due to gravity in meters per second squared.

- a) Suppose a rock falls 7.2 meters in 3 seconds on the moon. What is the acceleration due to gravity on the moon?
- b) Suppose a rock falls 78.4 meters in 4 seconds on Earth. What is the acceleration due to gravity on Earth?

Exercise 4: The lateral surface area of a right circular cone, s, is represented by the equation $s = \pi r \sqrt{r^2 + h^2}$, where r is the radius of the circular base and h is the height of the cone. If the lateral surface area of a large funnel is 236.64 square centimeters and its radius is 4.75 centimeters, find its height, to the *nearest hundredth of a centimeter*.

Exercise 5: The number of dogs, D, housed at a county animal shelter is modeled by the function $D = 4\sqrt{2M} + 50$, where M is the number of months the shelter has been open. How many months will it take for 74 dogs to be housed at the shelter?