Name:

\qquad

Solving Radical Equations

Exercise 1: Solve each equation. Check your solution.

1) $\sqrt{x}=5$
2) $\sqrt{2 x}=2$
3) $3 \sqrt{x}=1$
4) $2 \sqrt{x-1}=3$
5) $5 \sqrt{x-9}=3$
6) $4 \sqrt{2 x-1}=-3$
7) $\sqrt{2 x-3}=4$
8) $\sqrt{2 x+4}-5=6$
9) $\sqrt{3 x+9}-3=2$
10) $\sqrt{3 x+1}=2 \sqrt{x-1}$
11) $\sqrt{x+1}=7$
12) $6 \sqrt{x+3}=11$
13) $\sqrt{3-2 x}+5=11$
14) $\sqrt{x-4}=3 \sqrt{2 x}$
15) $7 \sqrt{x+3}=5 \sqrt{2 x-6}$
16) $\sqrt{3-2 x}=5 \sqrt{7+2 x}$

Exercise 2: The speed of sound S, in meters per second, near Earth's surface can be determined using the formula $S=20 \sqrt{t+273}$, where t is the surface temperature in degrees Celsius. Suppose a racing team has designed a car that can travel 340 meters per second, in hopes of breaking the sound barrier. At what temperature will the speed of sound be 340 meters per second?

Exercise 3: The formula $t=\sqrt{\frac{2 s}{g}}$ can be used to determine the time t, in seconds, it takes an object
initially at rest to fall s meters. In this formula, g is the acceleration due to gravity in meters per second squared.
a) Suppose a rock falls 7.2 meters in 3 seconds on the moon. What is the acceleration due to gravity on the moon?
b) Suppose a rock falls 78.4 meters in 4 seconds on Earth. What is the acceleration due to gravity on Earth?

Exercise 4: The lateral surface area of a right circular cone, s, is represented by the equation $s=\pi r \sqrt{r^{2}+h^{2}}$, where r is the radius of the circular base and h is the height of the cone. If the lateral surface area of a large funnel is 236.64 square centimeters and its radius is 4.75 centimeters, find its height, to the nearest hundredth of a centimeter.

Exercise 5: The number of dogs, D, housed at a county animal shelter is modeled by the function $D=4 \sqrt{2 M}+50$, where M is the number of months the shelter has been open. How many months will it take for 74 dogs to be housed at the shelter?

