Slope

The slope of a line measures the steepness of the line. The slope is associated with "rise over run". Rise means how many units you move up or down from point to point. On the graph that would be a change in the y values.
Run means how far left or right you move from point to point. On the graph, that would mean a change of x values.

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y-\text { coordinates }}{\text { change in } x-\text { coordinates }}
$$

The slope can be positive, negative, zero or undefined. We will study each case independently.
Positive slope: when a line has a positive slope it goes up from left to right.

Negative slope: when a line has a negative slope it goes down from left to right.

Zero slope: when a line is horizontal the slope is 0 .

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=0
$$

Undefined slope: when the line is vertical the slope is undefined.

Rule 1: To find the slope of a straight line passing through two points $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, we use the formula: $m=$ slope $=\frac{\text { rise }}{\text { run }}=\frac{\text { change in } y-\text { coordinates }}{\text { change in } x-\text { coordinates }}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Example 1: Find the slope of the straight line that passes through $(-5,1)$ and $(3,-4)$.
$m=$ slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-1}{3-(-5)}=\frac{-5}{8}$

Example 2 : Find the slope of the straight line that passes through $(6,2)$ and $(-4,2)$. $m=$ slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-2}{-4-6}=\frac{0}{-10}=0$

It is ok to have a 0 in the numerator. Remember that $\frac{0}{n}=0$.
\Rightarrow The straight line is horizontal

Example 3 : Find the slope of the straight line that passes through ($-1,4$) and $(-1,6)$.
$m=$ slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-4}{-1-(-1)}=\frac{2}{-1+1}=\frac{2}{0} \quad$ undefined
\Rightarrow The straight line is vertical

