Name: _____

Similarity in Right Triangles

1) Given: $\Box ABC$ with $\angle ACB$ a right angle and altitude $\overline{CD} \perp \overline{AB}$ at D.

Prove: $\Box ABC \Box \Box ACD \Box \Box CBD$

2) Given: $\Box ABC$ with $\angle ACB$ a right angle and altitude $\overline{CD} \perp \overline{AB}$ at D

Prove: $\frac{AB}{AC} = \frac{AC}{AD}$ and $\frac{AB}{BC} = \frac{BC}{BD}$

3) The altitude to the hypotensue of right triangle ABC separates the hypotensue into two segments. The length of one segment is 5 inches more than the measure of the other. If the length of the altitude is 6 inches, find the length of the hypotensue.

- 4) \Box_{ABC} is a right triangle with \angle_{ACB} the right angle. Altitude \overline{CD} intersects \overline{AB} at D. In each case find the required length.
 - 1) If AD = 3 and CD = 6, find DB.
 - 2) If AC = 10 and AD = 5, find AB.
 - 3) If AD = 4 and DB = 9, find CD.
 - 4) If AD = 3 and DB = 27, find CD.
 - 5) If DB = 8 and AB = 18, find BC.
 - 6) If AB = 8 and AC = 4, find AD
 - 7) If AC = 6 and AB = 9, find AD
 - 8) If DB = 4 and BC = 10, find AB.
 - 9) If AD = 2 and AB = 18, find AC
- 5) In parallelogram ABCD, $\overline{AE} \perp \overline{BC}$ and $\overline{AF} \perp \overline{CD}$. Prove that $\Box ABE \Box \Box ADF$.

