Name:

\qquad

Similarity in Right Triangles

1) Given: $\triangle A B C$ with $\angle A C B$ a right angle and altitude $\overline{C D} \perp \overline{A B}$ at D .

Prove: $\sqcap A B C \sqcap \sqcap A C D \sqcap \sqcap C B D$

2) Given: $\square A B C$ with $\angle A C B$ a right angle and altitude $\overline{C D} \perp \overline{A B}$ at D Prove: $\frac{A B}{A C}=\frac{A C}{A D}$ and $\frac{A B}{B C}=\frac{B C}{B D}$

3) The altitude to the hypotensue of right triangle $A B C$ separates the hypotensue into two segments. The length of one segment is 5 inches more than the measure of the other.If the length of the altitude is 6 inches, find the length of the hypotensue.

4) $\square A B C$ is a right triangle with $\angle A C B$ the right angle. Altitude $\overline{C D}$ intersects $\overline{A B}$ at D . In each case find the required length.

1) If $A D=3$ and $C D=6$, find $D B$.
2) If $A C=10$ and $A D=5$, find $A B$.
3) If $A D=4$ and $D B=9$, find $C D$.
4) If $A D=3$ and $D B=27$, find $C D$.
5) If $\mathrm{DB}=8$ and $\mathrm{AB}=18$, find BC .
6) If $A B=8$ and $A C=4$, find $A D$
7) If $A C=6$ and $A B=9$, find $A D$
8) If $D B=4$ and $B C=10$, find $A B$.
9) If $A D=2$ and $A B=18$, find $A C$
10) In parallelogram $A B C D, \overline{A E} \perp \overleftrightarrow{B C}$ and $\overline{A F} \perp \overleftrightarrow{C D}$. Prove that $\square A B E \square \square A D F$.

