Right Triangle Trigonometry

Our second look at the trigonometric functions is from a right triangle perspective. Consider a right triangle, with one acute angle labeled $\boldsymbol{\theta}$. Relative to the angle $\boldsymbol{\theta}$, the three sides of the triangle are the hypotenuse, the opposite to side (the side opposite the angle $\boldsymbol{\theta}$),and the adjacent side(the side adjacent to the angle $\boldsymbol{\theta}$).

Using the lengths of these three sides, you can form six ratios that define the six trigonometric functions of the acute angle $\boldsymbol{\theta}$.
 sine cosecant cosine secant tangent cotangent

In the following definitions, it is important to see that $0^{\circ}<\theta<90^{\circ}$ (θ lies in the first quadrant) and that for such angles the value of each trigonometric function is positive.

Definition: Right Triangle Definition of Trigonometric Functions: Let $\boldsymbol{\theta}$ be an acute angle of a right triangle. The six trigonometric functions of the angle $\boldsymbol{\theta}$ are defined as ratios of the sides of the right triangle:

$$
\begin{array}{lll}
\sin \theta=\frac{o p p}{h y p} & \cos \theta=\frac{a d j}{h y p} & \tan \theta=\frac{o p p}{a d j} \\
\csc \theta=\frac{h y p}{o p p} & \sec \theta=\frac{h y p}{a d j} & \cot \theta=\frac{a d j}{o p p}
\end{array}
$$

Note: The abbreviation opp., adj., and hyp. Represent the lengths of the three sides of a right triangle.

Opp = the length of the side opposite to θ
Adj = the length of the side adjacent to $\boldsymbol{\theta}$
Hyp = the length of the hypotenuse
To remember these, many people use SOH CAH TOA, that is:
$\mathbf{S} \operatorname{in} \theta=\frac{\text { Opposite }}{\text { Hypotenuse }} \quad \operatorname{Cos} \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }} \quad \mathbf{T} \operatorname{an} \theta=\frac{\text { Opposite }}{\text { Adjacent }}$

Example 1: Refer to the diagram to evaluate:

1) $\sin \theta=\frac{o p p}{\text { hyp }}=\frac{G F}{E F}=\frac{4}{5}$
2) $\sin \phi=\frac{o p p}{h y p}=\frac{E G}{E F}=\frac{3}{5}$
3) $\cos \theta=\frac{a d j}{h y p}=\frac{E G}{E F}=\frac{4}{5}$

4) $\csc \theta=\frac{h y p}{o p p}=\frac{E F}{G F}=\frac{5}{4}$
5) $\sec \phi=\frac{\text { hyp }}{a d j}=\frac{E F}{G F}=\frac{5}{4}$

Relationship between trigonometry of right triangles and the unit circle.

Now, in a unit circle draw a right triangle

Using the right triangle definitions of the trigonometric functions, we can write:
$\sin \theta=\frac{\text { opposite }}{\text { hypotenuse }}=\mathrm{y}$ and $\cos \theta=\frac{\text { adjacent }}{\text { hypotenuse }}=\mathrm{x}$
In other words, we see that $\cos \theta=x$ and $\sin \theta=y$ which is the definition of the trigonometric functions using the unit circle.
Once $\sin \theta$ and $\cos \theta$ are determined, the other trigonometric functions are defined in the same manner as in the right triangle approach.

From Geometry ... remember the ratios for 30-60-90 and 45-45-90 triangles?
Now let's put these triangles onto a unit circle, and we'll be able to evaluate the trig functions at angles that are $30^{\circ}, 60^{\circ}$ and 45°. Remember, on a unit circle, the hypotenuse, $r=1, \sin \theta=y$ and $\cos \theta=x$

Sine and Cosine of 30°

$$
\sin 30^{\circ}=\frac{1}{2} \quad \cos 30^{\circ}=\frac{\sqrt{3}}{2}
$$

Sine and Cosine of 45°

$$
\sin 45^{\circ}=\frac{\sqrt{2}}{2} \quad \cos 45^{\circ}=\frac{\sqrt{2}}{2}
$$

Sine and Cosine of 60°

$$
\sin 30^{\circ}=\frac{\sqrt{3}}{2}
$$

$$
\cos 30^{\circ}=\frac{1}{2}
$$

Example 2: A historical light house is 200 cm from a bike path along the edge of a lake. A walkway to the lighthouse is 400 cm long. Find the acute angle θ between the bike path and the walkway.

The \sin of the angle θ is: $\sin \theta=\frac{o p p .}{\text { hyp. }}=\frac{200}{400}=\frac{1}{2}$
Therefore, the value of the angle θ is 30°

Using the sine and cosine values we can find the values of the other four trigonometric functions. The table below will summarize all the values of the remarkable acute angles:

Angle (θ)	$\sin \theta$	$\cos \theta$	$\tan \theta$	$\csc \theta$	$\sec \theta$	$\cot \theta$
0	0	1	0	undef.	1	undef.
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{3}}{3}$	2	$\frac{2 \sqrt{3}}{3}$	$\sqrt{3}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$	1	$\sqrt{2}$	$\sqrt{2}$	1
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{2 \sqrt{3}}{3}$	2	$\frac{\sqrt{3}}{3}$
$\frac{\pi}{2}$	1	0	undef.	1	undef.	0

Example 3: Solve the right triangle shown in the figure

To find the value of c , we will use the cosine function which relates the adjacent side to the hypotenuse
$\cos 41=\frac{\text { adj }}{\text { hyp }}=\frac{b}{c} \Rightarrow c=\frac{b}{\cos 41}=\frac{17}{0.75}=22.6$

To find the value of a, we will use the tangent function which relates the adjacent side to the opposite
$\tan 41=\frac{o p p}{a d j}=\frac{a}{b} \Rightarrow a=b \tan 41=17(0.87)=14.79$

Example 4: Find length b.

b is adjacent to angle A.
By definition, $\cos \theta=\frac{a d j}{h y p}$
Therefore, we write an equation using the cosine.
$\cos 19=\frac{b}{70}$
Multiply each side by 70 to isolate the variable b.
$b=70 \cos 19=66.19$

