Name:

\qquad

Radical Functions

Exercise 1: Write the following expressions using only positive integer exponents and radicals.

1) $4^{1 / 5}$
2) $\left(\frac{4}{7}\right)^{2 / 5}$
3) $3^{-3 / 2}$
4) $100^{0.1}$

Exercise 2: Let a and b stand for any numbers. Write the following expressions using only positive integer exponents and radicals.

1) $a^{1 / 2}$
2) $(a+b)^{-1 / 2}$
3) $2 a^{-1 / 2}+3 b^{-1 / 2}$

Exercise 3: Calculate the number of units of output Q of a firm when its production function is given by $Q=100 K^{1 / 3} L^{1 / 2}$, where K and L are, respectively, the amount of capital and labor that are invested in the production process

1) when $K=27$ and $L=100$.
2) when $K=100$ and $L=27$.

Exercise 4: The time ,t, it takes in seconds for an object to fall d feet is given by the equation $t=\frac{1}{4} \sqrt{d}$. The Sears Tower in Chicago is 1450 feet tall. How long would it take a penny to fall from the top of the Sears Tower?

Exercise 5: Are there numbers with both a positive and a negative fourth root? If so, give an example. If not, explain why not.

Exercise 6: Are there any numbers for which the second, third, fourth, fifth, and sixth roots are the same number? If so, list them.

Exercise 7: Find the domain of definition

1) $f(x)=\sqrt{-2 x+4}$
2) $f(x)=\sqrt{x+3}$
3) $f(x)=\sqrt{-2 x+\sqrt{2}}$
4) $f(x)=\sqrt{-x-2}$
5) $f(x)=\sqrt{3-9 x}$
6) $f(x)=\sqrt{5 x+1}$
7) $f(x)=\sqrt{\frac{1}{2} x+\frac{3}{2}}$
8) $f(x)=\sqrt{3 x-2}$
