Pyramid and Cone

Part A: Pyramid

Theorem 1: Lateral Area of a Regular Pyramid: If a regular pyramid has a lateral area of L square units, a base with a perimeter of P units, and a slant height of l units, then $L=\frac{1}{2} P l$

$$
L=\frac{1}{2} P l
$$

With prisms and cylinders, the formula for the surface area is $S=L+2 B$. Since a pyramid has only one base, the formula for its surface area is $S=L+B$, where $L=\frac{1}{2} P l$.

Theorem 2: Surface Area of a Regular Pyramid: If a regular pyramid has a surface area of S square units, a slant height of l units, and a base with perimeter of P units and area of B square units, then $S=\frac{1}{2} P l+B$

$$
S=\frac{1}{2} P l+B
$$

Theorem 3: Volume of a Pyramid: If a pyramid has a volume of V cubic units and a height of h units and the area of the base is B square units, then $V=\frac{1}{3} B h$

$$
V=\frac{1}{3} B h
$$

Mathelpers

The relationship between the volumes of a cone and a cylinder is similar to the relationship between the volumes of a pyramid and a prism. The volume of a cone is $\frac{1}{3}$ the volume of a cylinder with the same base and height. The volume of a cylinder is $V=\pi r^{2} h$, so the volume of a cone is $V=\frac{1}{3} \pi r^{2} h$

Example 1: The pyramid shown has a square base.
The square has sides of length 12 cm .
The height of the pyramid is 10 cm .
Find the volume.
The area of the square base is $12 \times 12=144 \mathrm{~cm}^{2}$ So, the volume of the pyramid is:

$$
\begin{aligned}
\text { Volume } & =\frac{1}{3} \times 144 \times 10 \\
& =48 \times 10 \\
& =480 \mathrm{~cm}^{3} .
\end{aligned}
$$

Example 2: The diagram shows a triangular-based pyramid.
The base of the pyramid is a right-angled triangle.
The volume of the pyramid is $325 \mathrm{~cm}^{3}$.
Find the height of the pyramid.

The base of the pyramid is as shown:

The area of the base is $\frac{1}{2} \times 9 \times 8=36 \mathrm{~cm}^{2}$.
Substitute information into the formula for the volume of a pyramid.
Volume of pyramid = $\frac{1}{3} \times$ base area \times height
$325=\frac{1}{3} \times 36 \times$ height
$325=12 \times$ height.
So, height $=325 \div 12=27.08 \mathrm{~cm}$

Part B: Cone

The slant height of a cone is the length of any segment whose endpoints are the vertex of the cone and a point on the circle that forms the base.

The formulas for finding the lateral area and surface area of a cone are similar to those for a regular pyramid. However, since the base is a circle, the perimeter becomes the circumference, and the area of the base is πr^{2} square units.

Theorem 4: Lateral Area of a Cone If a cone has a lateral area of L square units, a slant height of l units, and a base with a radius of r units, then $L=\frac{1}{2} \bullet 2 \pi r l$ or $L=\pi r l$

$$
L=\pi r l
$$

To find the surface area of a cone, add its lateral area and the area of its base.
Theorem 5: Surface Area of a Cone If a cone has a surface area of S square units, a slant height of l units, and a base with a radius of r units, then $S=\pi r l+\pi r^{2}$

$$
S=\pi r l+\pi r^{2}
$$

Theorem 6: Volume of a Cone: If a cone has a volume of V cubic units, a radius of r units, and a height of h units, then $V=\frac{1}{3} \pi r^{2} h$

$$
V=\frac{1}{3} \pi r^{2} h
$$

Example 3: The base of a cone has a radius of 4 cm . The height of the cone is 6 cm . Find the volume of the cone. Leave your answer in terms of π.

Substitute the information into the formula for the volume of a cone:
Volume of cone $=\frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& =\frac{1}{3} \times \pi \times 4^{2} \times 6 \\
& =2 \times \pi \times 16
\end{aligned}
$$

Volume $=32 \pi \mathrm{~cm}^{3}$.

Example 4: A cone has a volume of $1650 \mathrm{~cm}^{3}$. The cone has a height of 28 cm . Find the radius of the cone. Give your answer correct to 2 significant figures.

Substitute information into the formula:
Volume of cone $=\frac{1}{3} \pi r^{2} h$
$1650=\frac{1}{3} \times \pi \times r^{2} \times 28$
$1650=29.32153 r^{2}$

$r^{2}=56.2726$
i.e. $r=7.5 \mathrm{~cm}$ (to 2 SF)

The radius of the cone is therefore 7.5 cm .

Mathelpers

Example 5: The diagram shows an object made from two cones, one on top of the other.
The top cone has a height of 8 cm and the bottom cone has a height of 10 cm . Both cones have a radius of 5 cm .

Find the total surface area of the object.

The formula for the curved surface area of a cone is: $\pi r l$. We can find the slant length, I, for each cone using Pythagoras' theorem - we know the radius and the height of each cone.

Top cone:

$$
\begin{aligned}
& l^{2}=5^{2}+8^{2}=25+64=89 \\
& l=\sqrt{89}=9.434 \mathrm{~cm}
\end{aligned}
$$

Therefore, curved surface area $=\pi \times 5 \times 9.434=148.2 \mathrm{~cm}$
Bottom cone:

$$
\begin{aligned}
& l^{2}=5^{2}+10^{2}=25+100=125 \\
& l=\sqrt{125}=11.180 \mathrm{~cm}
\end{aligned}
$$

Therefore, curved surface area $=\pi \times 5 \times 11.180=175.6 \mathrm{~cm}$
So total surface area is $324 \mathrm{~cm}^{2}$ (to 3SF)

