Properties of Sets

Properties of Sets: The set operations verify the following properties:

Law 1: Associative Laws: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$

Law 2: Commutative Laws: $A \cup B = B \cup A$ $A \cap B = B \cap A$

Example 1: Prove $A \cap B = B \cap A$ $A \cap B = \{x : x \in A \text{ and } x \in B\} = \{x : x \in B \text{ and } x \in A\} = B \cap A$

Law 3: Distributive Laws: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Law 4: Identity Laws: $A \bigcup \varnothing = A$ $A \bigcap U = A$

Law 5: Complement Laws: $A \cup \overline{A} = U$ $A \cap \overline{A} = \emptyset$

Law 6: Idempotent Laws: $A \cap A = A$ $A \cup A = A$

Law 7: Bound Laws: $A \bigcup U = U$ $A \bigcap \emptyset = \emptyset$

Law 8: Absorption Laws: $A \cup (A \cap B) = A$ $A \cap (A \cup B) = A$

Law 9: Involution Law: $\overline{\overline{A}} = A$

Law 10: 0/1 laws: $\overline{\emptyset} = U$ $\overline{U} = \emptyset$

Mathelpers.com

Mathelpers

Law 11: DeMorgan's Laws:

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$

 $\overline{A \cap B} = \overline{A} \bigcup \overline{B}$

Even though the proofs of set equations are simple, they can be quite tedious, and we shall introduce a new tool for tackling problems of this sort.

If A and B are sets, then for an arbitrary element x of our universe of discourse U there are four possibilities:

 $x \in A$ and $x \in B$, $x \in A$ and $x \notin B$, $x \notin A$ and $x \in B$, $x \notin A$ and $x \notin B$.

For every one of these cases let us consider if x is in the intersection of A and B: If $x \in A$ and $x \in B$, then $x \in A \cap B$. In all three other cases, we have $x \notin A \cap B$.

This observation can be put in the form of a table which looks like this:

A	B	$A\cap B$	$A\cup B$
1	1	1	1
1	0	0	1
0	1	0	1
0	0	0	0

Example 2: Using the table method, prove:

The second law of absorption $A \cap (A \cup B) = A$

A	B	$A\cup B$	$A\cap (A\cup B)$
1	1	1	1
1	0	1	1
0	1	1	0
0	0	0	0

Example 3: Using the table method, prove:

The first distributive law $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ is:

A	В	С	$B\cup C$	$A\cap \left(B\cup C\right)$	$A\cap B$	$A\cap C$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	1	0	1
1	0	1	1	1	0	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0