Name:

\qquad

Operations with Radicals

Radical expressions can be combined (added or subtracted) if they are like radicals - that is, they have the same index and radicand. For instance, $\sqrt{2}, 3 \sqrt{2}$ and $\frac{3}{2} \sqrt{2}$ are like radicals, but $\sqrt{2}$ and $\sqrt{3}$ are unlike radicals. To determine whether two radicals can be combined, you should first simplify each radical.

Rule 1: Let a and b be real numbers:

$$
\sqrt{a+b}^{1} \sqrt{a}+\sqrt{b} \quad \sqrt{a}+\sqrt{a}=2 \sqrt{a}
$$

Rule 2: Let a, x and b be real numbers:

$$
a \sqrt{x}+b \sqrt{x}=(a+b) \sqrt{x} \quad a \sqrt{x}-b \sqrt{x}=(a-b) \sqrt{x}
$$

Example 1: Combine the radicals and write your answer in simplest form

1) $4 \sqrt{7}+11 \sqrt{7}$
$4 \sqrt{7}+11 \sqrt{7}$
$=(4+11) \sqrt{7}$
$=15 \sqrt{7}$

$$
\text { 2) } \begin{aligned}
& 2 \sqrt{3}+6 \sqrt{27} \\
& 2 \sqrt{3}+6 \sqrt{27} \\
& =2 \sqrt{3}+18 \sqrt{3} \\
& =(2+18) \sqrt{3} \\
& = \\
& =20 \sqrt{3}
\end{aligned}
$$

$$
\text { 3) } \begin{aligned}
& 6 \sqrt{9 x}-3 \sqrt{x} \\
& 6 \sqrt{9 x}-3 \sqrt{x} \\
&= 18 \sqrt{x}-3 \sqrt{x} \\
&=(18-3) \sqrt{x} \\
&= 15 \sqrt{x}
\end{aligned}
$$

4) $\sqrt{x^{5}-x^{4}}-\sqrt{16 x-16}$
$\sqrt{x^{5}-x^{4}}-\sqrt{16 x-16}$
$=\sqrt{x^{4}(x-1)}-\sqrt{16(x-1)}$

$$
=x^{2} \sqrt{x-1}-4 \sqrt{x-1}
$$

$$
=\left(x^{2}-4\right) \sqrt{x-1}
$$

$$
=(x-2)(x+2) \sqrt{x-1}
$$

Rule 3: The rules for doing arithmetic with square roots are quite simple:

1) Multiplication: "the product of square roots is the square root of the product"

$$
\sqrt{a^{\prime} b}=\sqrt{a} \cdot \sqrt{b}
$$

When multiplying radicals, one must multiply the numbers OUTSIDE (O) the radicals AND then multiply the numbers INSIDE (I) the radicals.

$$
O_{1} \sqrt{I_{1}} \bullet O_{2} \sqrt{I_{2}}=O_{1} \bullet O_{2} \sqrt{I_{1}} \bullet \sqrt{I_{2}}
$$

2) Division: "the quotient of square roots is the square root of the quotient"

$$
\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}
$$

When dividing radicals, one must divide the numbers OUTSIDE (O) the radicals AND then divide the numbers INSIDE (I) the radicals.

$$
\frac{O_{1} \sqrt{I_{1}}}{O_{2} \sqrt{I_{2}}}=\frac{O_{1}}{O_{2}} \cdot \frac{\sqrt{I_{1}}}{\sqrt{I_{2}}}
$$

Example 2: Simplify each expression:

1) $\sqrt{5} \times \sqrt{15}$

$$
\sqrt{5} \times \sqrt{15}=\sqrt{5 \times 15}=\sqrt{75}=5 \sqrt{3}
$$

2) $\frac{\sqrt{32}}{\sqrt{42}}$
$\frac{\sqrt{32}}{\sqrt{42}}=\sqrt{\frac{32}{42}}=\sqrt{\frac{32^{16}}{42^{21}}}=\sqrt{\frac{16}{21}}=\frac{4}{\sqrt{21}}$
3) $\sqrt{5}(3 \sqrt{10}-2 \sqrt{5})$

$$
\begin{aligned}
& \sqrt{5}(3 \sqrt{10}-2 \sqrt{5}) \\
& =(\sqrt{5})(3 \sqrt{10})-(\sqrt{5})(2 \sqrt{5}) \\
& =3 \sqrt{50}-2 \sqrt{25} \\
& =15 \sqrt{2}-10
\end{aligned}
$$

4) $(3+\sqrt{3})(2-2 \sqrt{3})$
$(3+\sqrt{3})(5-2 \sqrt{3})$
$=3(5-2 \sqrt{3})+\sqrt{3}(5-2 \sqrt{3})$
$=15-6 \sqrt{3}+5 \sqrt{3}-2 \sqrt{9}$
$=15-\sqrt{3}-6$
$=9-\sqrt{3}$

Remark 1: $\sqrt{a^{2} b}=\sqrt{a^{2}}, \sqrt{b}=a \sqrt{b}$

Example 3: Simplify

$$
\frac{\sqrt[3]{40 a^{3} b^{10}}}{\sqrt[4]{81 a^{4}}}
$$

- 40 can be factored to 5×8 where 8 is a perfect cube.
- a^{3} is a perfect cube.
- b^{10} can be factored to $b^{9} \times b$ where b^{9} is a perfect cube.

$$
\begin{aligned}
& \frac{\sqrt[3]{40 a^{3} b^{10}}}{\sqrt[4]{81 a^{4}}} \\
& =\frac{\sqrt[3]{8 \times 5 \times a^{3} \times b^{9} \times b}}{\sqrt[4]{81 \times a^{4}}} \\
& =\frac{\sqrt[3]{8} \times \sqrt[3]{5} \times \sqrt[3]{a^{3}} \times \sqrt[3]{b^{9}} \times \sqrt[3]{b}}{\sqrt[4]{81} \times \sqrt[4]{a^{4}}} \\
& =\frac{2 \times \sqrt[3]{5} \times a \times b^{3} \times \sqrt[3]{b}}{3 \times a} \\
& =\frac{2 a b^{3} \sqrt[3]{5 b}}{3 a} \\
& =\frac{2 b^{3} \sqrt[3]{5 b}}{3}
\end{aligned}
$$

