Multiplying Matrices

We can only multiply matrices if the number of columns in the first matrix is the same as the number of rows in the second matrix.
Multiplying a 2×3 matrix by a 3×4 matrix is possible and it gives a 2×4 matrix as an answer. Multiplying a 7×1 matrix by a 1×2 matrix is okay; it gives a 7×2 matrix
A 4×3 matrix times a 2×3 matrix is NOT possible.

How to Multiply 2 Matrices?

We use letters first to see what is going on. We'll see an example with numbers after.
As an example, let's take a general 2×3 matrix multiplied by a 3×2 matrix.
$\left[\begin{array}{lll}a & \mathrm{~b} & \mathrm{c} \\ \mathrm{d} & \mathrm{e} & \mathrm{f}\end{array}\right]\left[\begin{array}{ll}u & \mathrm{v} \\ \mathrm{w} & \mathrm{x} \\ \mathrm{y} & \mathrm{z}\end{array}\right]$
The answer will be a 2×2 matrix.
Step 1: We multiply and add the elements as follows. We work across the $1^{\text {st }}$ row of the first matrix, multiplying down the $1^{\text {st }}$ column of the second matrix, element by element. We add the resulting products. Our answer goes in position a_{11} (top left) of the answer matrix.

$$
\left[\begin{array}{lll}
a & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right]\left[\begin{array}{ll}
u & \mathrm{v} \\
\mathrm{w} & \mathrm{x} \\
\mathrm{y} & \mathrm{z}
\end{array}\right]=[a u+b w+c y]
$$

Step 2: We do a similar process for the $1^{\text {st }}$ row of the first matrix and the $2^{\text {nd }}$ column of the second matrix. The result is placed in position a_{12}.

$$
\left[\begin{array}{ccc}
a & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right]\left[\begin{array}{ll}
u & \mathrm{v} \\
\mathrm{w} & \mathrm{x} \\
\mathrm{y} & \mathrm{z}
\end{array}\right]=\left[\begin{array}{ll}
a u+b w+c y & \mathrm{av}+\mathrm{bx}+\mathrm{cz}
\end{array}\right]
$$

Step 3: Now for the $\mathbf{2}^{\text {nd }}$ row of the first matrix and the $1^{\text {st }}$ column of the second matrix. The result is placed in position a_{21}.

$$
\left[\begin{array}{lll}
a & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right]\left[\begin{array}{ll}
u & \mathrm{v} \\
\mathrm{w} & \mathrm{x} \\
\mathrm{y} & \mathrm{z}
\end{array}\right]=\left[\begin{array}{ll}
a u+b w+c y & \mathrm{av}+\mathrm{bx}+\mathrm{cz} \\
\text { du+ew+fy }
\end{array}\right]
$$

Step 4: Do the $2^{\text {nd }}$ row of the first matrix and the $2^{\text {nd }}$ column of the second matrix. The result is placed in position a_{22}.

$$
\left[\begin{array}{lll}
a & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right]\left[\begin{array}{ll}
u & \mathrm{v} \\
\mathrm{w} & \mathrm{x} \\
\mathrm{y} & \mathrm{z}
\end{array}\right]=\left[\begin{array}{lr}
a u+b w+c y & \mathrm{av}+\mathrm{bx}+\mathrm{cz} \\
\mathrm{du}+\mathrm{ew}+\mathrm{fy} & \mathrm{dv}+\mathrm{ex}+\mathrm{fz}
\end{array}\right]
$$

So the result of multiplying our 2 matrices is as follows:

$$
\left[\begin{array}{ccc}
a & \mathrm{~b} & \mathrm{c} \\
\mathrm{~d} & \mathrm{e} & \mathrm{f}
\end{array}\right]\left[\begin{array}{ll}
u & \mathrm{v} \\
\mathrm{w} & \mathrm{x} \\
\mathrm{y} & \mathrm{z}
\end{array}\right]=\left[\begin{array}{lc}
a u+b w+c y & \mathrm{av}+\mathrm{bx}+\mathrm{cz} \\
\mathrm{du}+\mathrm{ew}+\mathrm{fy} & \mathrm{dv}+\mathrm{ex}+\mathrm{fz}
\end{array}\right]
$$

The process is the same for any size matrix. We multiply across rows of the first matrix and down columns of the second matrix, element by element. We then add the products:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
\mathrm{e} & \mathrm{f} \\
\mathrm{~g} & \mathrm{~h}
\end{array}\right)=\left(\begin{array}{ll}
a e+b g & \mathrm{af}+b h \\
c e+d g & \mathrm{cf}+\mathrm{dh}
\end{array}\right)
$$

In this case, we multiply a 2×2 matrix by a 2×2 matrix and we get a 2×2 matrix as the result.
Remark: Be careful with writing matrix multiplication. The following expressions have different meanings:

1) $A B$ is matrix multiplication
2) $A \times B$ cross product, which returns a vector
3) $A \bullet B$ dot product, which returns a scalar

Example 1:

If $A=\left(\begin{array}{ccc}0 & -1 & 2 \\ 4 & 11 & 2\end{array}\right)$ and $B=\left(\begin{array}{rr}3 & -1 \\ 1 & 2 \\ 6 & 1\end{array}\right)$, find $A B$ and $B A$ if possible:
Now $A B$ is $(2 \times 3)(3 \times 2)$ which will give 2×2 :

$$
\begin{aligned}
& A B=\left(\begin{array}{ll}
(0)(3)+(-1)(1)+(2)(6) & (0)(-1)+(-1)(2)+(2)(1) \\
(4)(3)+(11)(1)+(2)(6) & (4)(-1)+(11)(2)+(2)(1)
\end{array}\right) \\
& A B=\left(\begin{array}{cc}
11 & 0 \\
35 & 20
\end{array}\right)
\end{aligned}
$$

Now $B A$ is $(3 \times 2)(2 \times 3)$ which will give 3×3 :
$B A=\left(\begin{array}{rr}3 & -1 \\ 1 & 2 \\ 6 & 1\end{array}\right)\left(\begin{array}{ccc}0 & -1 & 2 \\ 4 & 11 & 2\end{array}\right)=\left(\begin{array}{lll}3(0)-1(4) & 3(-1)-1(11) & 3(2)-1(2) \\ 1(0)+2(4) & 1(-1)+2(11) & 1(2)+2(2) \\ 6(0)+1(4) & 6(-1)+1(11) & 6(2)+1(2)\end{array}\right)$
$=\left(\begin{array}{lll}0-4 & -3-11 & 3-2 \\ 0+8 & -1+22 & 2+4 \\ 0+4 & -6+11 & 12+2\end{array}\right)=\left(\begin{array}{ccc}-4 & -14 & 1 \\ 8 & 21 & 6 \\ 4 & 5 & 14\end{array}\right)$
$B A=\left(\begin{array}{ccc}-4 & -14 & 1 \\ 8 & 21 & 6 \\ 4 & 5 & 14\end{array}\right)$
So in this case, $A B \neq B A$

Example 2:

Let

$$
A=\left[\begin{array}{rr}
1 & 2 \\
-1 & 3
\end{array}\right] \text { and } B=\left[\begin{array}{lll}
2 & 3 & 0 \\
3 & 4 & 6
\end{array}\right]
$$

Find (a) $A B$ (b) $B A$
(a) $A B=\left[\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right]\left[\begin{array}{lll}2 & 3 & 0 \\ 3 & 4 & 6\end{array}\right]=\left[\begin{array}{rrr}1 \cdot 2+2 \cdot 3 & 1 \cdot 3+2 \cdot 4 & 1 \cdot 0+2 \cdot 6 \\ -1 \cdot 2+3 \cdot 3 & -1 \cdot 3+3 \cdot 4 & -1 \cdot 0+3 \cdot 6\end{array}\right]=\left[\begin{array}{lll}8 & 11 & 12 \\ 7 & 9 & 18\end{array}\right]$
(b) $B A$ is not defined.

