Name:

\qquad

Mid-Segment Theorem

Exercise 1: Refer to the figure to write a two-column proof for parts 1 and 2

1) Given: U, V, and W are the midpoints of $\overline{X Z}, \overline{Y Z}$, and $\overline{X Y}$ respectively.

Prove: $\angle Z \cong \angle U W V$
2) Given: $\overline{U V} \square \overline{X Y}$
U is the midpoint of $\overline{X Z}$
W is the midpoint of $\overline{X Y}$

Prove: V is the midpoint of $\overline{Z Y}$

Exercise 2: B, D, F, and H are the midpoints of $\overline{A C}, \overline{C E}, \overline{E G}$, and $\overline{G A}$, respectively, as shown in the diagram. Write a two - column proof for each part (1-3).

1) Prove: $\overline{B D} \square \overline{H F} \quad$ (Hint: Draw an additional segment)
2) Prove: $\overline{B H} \square \overline{D F}$
3) Prove: $\angle H B D \cong \angle D F H$

Exercise 3: Points $\mathrm{A}, \mathrm{B}, \mathrm{E}$ and F are the midpoints of $\overline{X C}, \overline{X D}, \overline{Y C}$, and $\overline{Y D}$.

1. If $\mathrm{CD}=24$ then $\mathrm{AB}=$? and $\mathrm{EF}=$?
2. If $A B=5 x-8$ and $E F=3 x$, then $x=$?

