Name:

Medians and Altitudes of a Triangle

Exercise 1: D is the centroid of $\square A B C$ and $D G=4$. Find the indicated values.
Find:

1) $B G$.
2) $B D$
3) $E C$
4) $A F$
5) $A D$

Exercise 2: Use the figure and the given information. D is the centroid of $\square A B C, \overline{B E} \perp \overline{A C}$, $\overline{A B} \cong \overline{C B}, \mathrm{FB}=5, \mathrm{EC}=3$, and $\mathrm{DF}=2$

1) Find CF
2) Find CG
3) Find $C D$

4) Find the perimeter of $\square A B C$

Exercise 3: Construct a right triangle. Label it $\sqcup A B C$ with right angle B. Construct median $B D$. Compare the lengths of $B D, A D$, and $C D$.

Exercise 4: In an isosceles triangle, show that the bisector of the angle formed by the equal sides is also a perpendicular bisector, an altitude and a median of the triangle.

Exercise 5: In an equilateral triangle, show that the three angle bisectors are also the three perpendicular bisectors of sides, three altitudes and the three medians of the triangle.

Exercise 6: In the given figure if $\mathrm{BF}=\mathrm{FC}, \angle \mathrm{BAE}=\angle \mathrm{CAE}$ and $\angle \mathrm{ADE}=\angle \mathrm{GFC}=90^{\circ}$ then name a median, an angle bisector, and altitude and a perpendicular bisector of the triangle.

Exercise 7: Prove that if a triangle is equilateral, then an angle bisector is also a median.

